Skip to main content

Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China

Abstract

This study evaluates the performance of RegCM3 (Regional Climate Model Version 3) in simulating the East Asian rainfall, with emphasis on the diurnal variations of rainfall over Southeast China during the 1998–2002 summer (June–August) seasons. The evaluation focuses on the sensitivity of the choice of cumulus parameterizations and model domain. With the right setup, the spatial and temporal evolution of diurnal rainfall over Southeast China, which has not been well simulated by past studies, can be accurately simulated by RegCM3. Results show that the Emanuel cumulus scheme has a more realistic simulation of summer mean rainfall in East Asia, while the GFC (Grell scheme with the Frisch-Chappell convective closure assumption) scheme is better in simulating the diurnal variations of rainfall over Southeast China. The better performance of these two schemes [relative to the other two schemes in RegCM3: the Kuo scheme and the GAS (Grell scheme with the Arakawa–Schubert closure assumption) scheme] can be attributed to the reasonable reproduction of the major formation mechanism of rainfall—the moisture flux convergence—over Southeast China. Furthermore, when the simulation domain covers the entire Tibetan Plateau, the diurnal variations of rainfall over Southeast China are found to exhibit a noticeable improvement without changes in the physics schemes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. We have also compared the results presented in Figs. 3, 4, 5, 6, 7, 8, 9, 10 of the present work with those using NCEP reanalysis 2 as perfect boundary conditions (not shown) and found that the former are similar to the latter, supporting the robustness of conclusions made in this study.

  2. Note that because increases of errors in simulating \( {\bar{\text{P}}} \) are also evident when we use NCEP2 reanalysis as the lateral boundary condition (see also footnote 1) to drive the two domains (not shown), the difference in lateral boundary condition errors is likely not one of the causes for the increases of errors in simulating \( {\bar{\text{P}}} \).

  3. The observed and simulated percentage (%) of Var(ΔP)SEC explained by its related S1(P)SEC and S2(P)SEC is listed in row 7 and row 12 of Table 4 respectively.

  4. \( ( - \nabla \cdot {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Q} }}) = - \nabla \cdot \left( {\int_{{{\text{P}}0}}^{{300{\text{hPa}}}} {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {V} }}{\text{q}}\,{\text{dp}}} } \right) \), where V denotes the horizontal wind, q is the specific humidity, and p is the pressure level.

References

  • Anthes RA (1977) A cumulus parameterization scheme utilizing a one dimensional cloud model. Mon Wea Rev 105:270–286

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Bao Y, Lu S, Zuo H, Hou R (2006) Application of Regional Climate Model (RegCM3) in Northwest China II: sensitivity experiment for domain choice and cumulus convection parameterization. J Glaciol Geocryol 28(2):175–182 (in Chinese)

    Google Scholar 

  • Chen TC (2005) Variation of the Asian monsoon water vapor budget: interaction with the global-scale modes. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 417–458

    Google Scholar 

  • Chen TC, Wang SY, Huang WR, Yen MC (2004) Variation of the East Asian summer monsoon rainfall. J Clim 17:744–762

    Article  Google Scholar 

  • Chen G, Sha W, Iwasaki T (2009) Diurnal variation of precipitation over southeastern China: spatial distribution and its seasonality. J Geophys Res 114:D13103. doi:10.1029/2008JD011103

    Article  Google Scholar 

  • Chow KC, Chan JCL (2009) Diurnal variations of circulation and precipitation in the vicinity of the Tibetan Plateau in early summer. Clim Dyn 32(1):55–73

    Article  Google Scholar 

  • Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33:L24709. doi:10.1029/2006GL028026

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630

    Article  Google Scholar 

  • Daley R (1993) Atmospheric data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ding YH (2004) Seasonal march of the East Asian summer monsoon. In: Chang C-P (ed) The East Asian monsoon. World Scientific Press, Singapore, pp 3–53

    Chapter  Google Scholar 

  • Ding YH, Chan JCL (2005) The East Asia summer monsoon: an overview. Meteor Atmos Phys 89:117–142

    Article  Google Scholar 

  • Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  • Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37:722–1733

    Google Scholar 

  • Gao XJ, Xu Y, Zhao ZC, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185. doi:10.1007/s00704-005-0214-4

    Article  Google Scholar 

  • Giorgi F, Shields C (1999) Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J Geophys Res 104:6353–6375

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993) Development of a second generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832

    Article  Google Scholar 

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev 121:764–787

    Article  Google Scholar 

  • Guo QY (1983) The summer monsoon index in East Asia and its variation. Acta Geogr Sin 38:208–217 (in Chinese)

    Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118:1561–1575

    Article  Google Scholar 

  • Huang WR, Chan JCL (2011) Maintenance mechanisms for the early-morning maximum summer rainfall over Southeast China. Q J R Meteorol Soc 137:959–968. doi:10.1002/qj.815

    Article  Google Scholar 

  • Huang WR, Chan JCL, Wang SY (2010) A planetary-scale land–sea breeze circulation in East Asia and the western North Pacific. Q J R Meteorol Soc 136:1543–1553. doi:10.1002/qj.663

    Article  Google Scholar 

  • Im ES, Ahn JB, Remedio AR, Kwon WT (2008) Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: focus on the Korean peninsula. Int J Climatol 28:1861–1877. doi:10.1002/joc.1664

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449

    Google Scholar 

  • Krishnamurti TN, Kishtawal CM (2000) A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon Wea Rev 128:462–473

    Article  Google Scholar 

  • Lee MI, Schubert SD, Suarez MJ, Schemm JKE, Pan HL, Han J, Yoo SH (2008) Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J Geophys Res 113:D02111. doi:10.1029/2007JD008984

    Article  Google Scholar 

  • Liang XZ, Kunkel KE, Samel AN (2001) Development of a regional climate model for US Midwest applications. Part I: sensitivity to buffer zone treatment. J Clim 14:4363–4378

    Article  Google Scholar 

  • Liang XZ, Li L, Dai A, Kunkel KE (2004) Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett 31:L24208. doi:10.1029/2004GL021054

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, Da Rocha RP, Sloan LC, Steiner AL (2007) Reglonal climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteor Soc 88(9):1395–1409

    Article  Google Scholar 

  • Park HS, Chiang JCH, Bordoni S (2012) The mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J Clim 25:2394–2407

    Article  Google Scholar 

  • Qian JH (2008) Why precipitation is mostly concentrated over islands in the maritime continent. J Atmos Sci 65:1428–1441

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu HC, Gu W, Sienkiewicz M, Koster RD, Gelaro R, Stajner I, Nielsen JE (2008) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0. Technical report series on global modeling and data assimilation, 27

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1(1):82–96

    Article  Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  • Shin DW, Cocke S, LaRow TE (2007) Diurnal cycle of precipitation in a climate model. J Geophys Res 112:D13109. doi:10.1029/2006JD008333

    Article  Google Scholar 

  • Simpson JS, Kummerow C, Tao WK, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmo Phys 60:19–36

    Article  Google Scholar 

  • Singh GP, Oh JH, Kim JY, Kim OY (2006) Sensitivity of summer monsoon precipitation over East Asia to convective parameterization scheme in RegCM3. SOLA 2:29–32

    Article  Google Scholar 

  • Slingo A, Hodges KI, Robinson GJ (2004) Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Q J R Meteorol Soc 130(599):1449–1467

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, H’olm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Wallace JM (1975) Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon Wea Rev 103:406–419

    Article  Google Scholar 

  • Wang W, Seaman NL (1997) A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev 125:252–278

    Article  Google Scholar 

  • Wang Q, Ding YH, Jiang Y (1998) Relationship between Asian monsoon activities and the precipitation over China mainland. J Appl Meteorol 9:84–89 (in Chinese)

    Google Scholar 

  • Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon Wea Rev 135(2):567–585

    Article  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon. J Clim 21:4449–4463

    Article  Google Scholar 

  • Webster PJ, Clayson CA, Curry JA (1996) Clouds, radiation, and the diurnal cycle of the sea surface temperature in the tropical western Pacific. J Clim 9:1712–1730

    Article  Google Scholar 

  • Wei H, Fu C, Wang WC (1998) The effect of lateral boundary treatment of regional climate model on the East Asian summer monsoon rainfall simulation. Chin J Atmos Sci 22(5):779–790 (in Chinese)

    Google Scholar 

  • Yin S, Chen D, Xie Y (2009) Diurnal variations of precipitation during the warm season over China. Int J Climatol 29:1154–1170

    Article  Google Scholar 

  • Zanis P, Douvis C, Kapsomenakis I, Kioutsioukis I, Melas D, Pal JS (2009) A sensitivity study of the Regional Climate Model (RegCM3) to the convective scheme with emphasis in central eastern and southeastern Europe. Theor Appl Climatol 97(3):327–337

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algoriths for the computation of sea surface fluxes using toga coare and tao data. J Clim 11:2628–2644

    Article  Google Scholar 

  • Zhang GJ (2002) Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J Geophys Res 107:4220. doi:10.1029/2001JD001005

    Article  Google Scholar 

  • Zhang GJ (2003) Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. Southern Great Plains. Geophys Res Lett 30:L2281. doi:10.1029/2003GL018554

    Article  Google Scholar 

  • Zhou T, Yu R, Chen H, Dai A, Pan Y (2008) Summer precipitation frequency, intensity, and diurnal cycle over China: a comparison of satellite data with rain gauge observations. J Clim 21:3997–4010

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Simon Wang at Utah State University, USA and anonymous reviewers for their comments and suggestions which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Ru Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, WR., Chan, J.C.L. & Au-Yeung, A.Y.M. Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China. Clim Dyn 40, 1625–1642 (2013). https://doi.org/10.1007/s00382-012-1457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1457-2

Keywords