Skip to main content
Log in

The impact of the diurnal cycle on the MJO over the Maritime Continent: a modeling study assimilating TRMM rain rate into global analysis

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the present study, we use modeling experiments to investigate the impact of the diurnal cycle on the Madden-Julian Oscillation (MJO) during the Australian summer. Physical initialization and a nudging technique enable us to assimilate the observed Tropical Rainfall Measuring Mission (TRMM) rain rate and atmospheric variables from the National Centers for Environmental Prediction—National Center for Atmospheric Research Reanalysis 2 (R2) into the Florida State University Global Spectral Model (FSUGSM), resulting in a realistic simulation of the MJO. Model precipitation is also significantly improved by TRMM rain rate observation via the physical initialization. We assess the influence of the diurnal cycle on the MJO by modifying the diurnal component during the model integration. Model variables are nudged toward the daily averaged values from R2. Globally suppressing the diurnal cycle (NO_DIURNAL) exerts a strong impact on the Maritime Continent. The mean state of precipitation increases and intraseasonal variability becomes stronger over the region. It is well known that MJO weakens as it passes over the Maritime Continent. However, the MJO maintains its strength in the NO_DIURNAL experiment, and the diminution of diurnal signals during the integration does not change the propagating speed of the MJO. We suggest that diminishing the diurnal cycle in NO_DIURNAL consumes less moist static energy (MSE), which is required to trigger both diurnal and intraseasonal convection. Thus, the remaining MSE may play a major role along with larger convective instability and stronger lower level moisture convergence in intensifying the MJO over the Maritime Continent in the model simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Back L, Bretherton C (2006) Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys Res Lett 33:L17810. doi:10.1029/2006GL026672

    Article  Google Scholar 

  • Bladé I, Hartmann D (1993) Tropical intraseasonal oscillations in a simple nonlinear model. J Atmos Sci 50:2922–2939

    Article  Google Scholar 

  • Bloom S, Takacs L, Brin E (1996) Data assimilation using incremental analysis updates. Mon Wea Rev 124:1256–1271

    Article  Google Scholar 

  • Bowman K, Collier J, North G, Wu Q, Ha E, Hardin J (2005) Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J Geophys Res 110

  • Cane M, Molnar P (2001) Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411:157–162

    Article  Google Scholar 

  • Chen S, Houze R Jr (1997) Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Q J R Meteorol Soc 123(538):357–388

    Article  Google Scholar 

  • Cocke S, LaRow T (2000) Seasonal prediction using a regional spectral model embedded within a coupled ocean atmosphere model. Mon Wea Rev 128:689–708

    Article  Google Scholar 

  • Dayem K, Noone D, Molnar P (2007) Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation. J Geophys Res 112:D06101. doi:10.1029/2006JD007870

    Article  Google Scholar 

  • Gill A (1980) Some simple solutions for heat induced tropical circulation. Q J R Meteorol Soc 106(449):447–462

    Article  Google Scholar 

  • Hayashi Y (1979) Space-time spectral analysis of rotary vector series. J Atmos Sci 36:747–766

    Google Scholar 

  • Hendon H, Salby M (1994) The life cycle of the Madden-Julian oscillation. J Atmos Sci 51(15):2225

    Article  Google Scholar 

  • Hsu H, Lee M (2005) Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J Clim 18:795–809

    Article  Google Scholar 

  • Huffman G, Adler R, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78(1):5–20

    Article  Google Scholar 

  • Ichikawa H, Yasunari T (2006) Time-space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J Clim 19:1238–1260

    Article  Google Scholar 

  • Ichikawa H, Yasunari T (2008) Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during Austral summer. J Clim 21(12):2852–2868

    Article  Google Scholar 

  • Inness P, Slingo J (2006) The interaction of the Madden-Julian oscillation with the maritime continent in a GCM. Q J R Meteorol Soc 132(618):1645–1667

    Article  Google Scholar 

  • Kemball-Cook S, Weare B (2001) The onset of convection in the Madden–Julian Oscillation. J Clim 14:780–793

    Article  Google Scholar 

  • Kemball-Cook S, Wang B, Fu X (2002) Simulation of the intraseasonal oscillation in the ECHAM-4 model: the impact of coupling with an ocean model. JAtmos Sci 59:1433–1453

    Article  Google Scholar 

  • Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics*. J Clim 21:2680–2696

    Article  Google Scholar 

  • Kim K, North G (1997) EOFs of harmonizable cyclostationary processes. J Atmos Sci 54:2416–2427

    Article  Google Scholar 

  • Kim K, North G, Huang J (1996) EOFs of one-dimensional cyclostationary time series: computations, examples, and stochastic modeling. J Atmos Sci 53:1007–1017

    Article  Google Scholar 

  • Kim D, Sperber K, Stern W, Waliser D, Kang I, Maloney E, Wang W, Weickmann K, Benedict J, Khairoutdinov M (2009) Application of MJO simulation diagnostics to climate models. J Clim 22(23):6413–6436

    Article  Google Scholar 

  • Krishnamurti T, Low-Nam S, Pasch R (1983) Cumulus parameterization and rainfall rates II. Mon Wea Rev 111:815–828

    Google Scholar 

  • Krishnamurti T, Xue J, Bedi H, Ingles K, Oosterhof D (1991) Physical initialization for numerical weather prediction over the tropics. Tellus 43AB:53–81

    Google Scholar 

  • Krishnamurti T, Rohaly G, Bedi H (1994) On the improvement of precipitation forecast skill from physical initialization. Tellus 46A:53–81

    Google Scholar 

  • Lee M, Schubert S, Suarez M, Bell T, Kim K (2007) Diurnal cycle of precipitation in the NASA Seasonal to Interannual Prediction Project atmospheric general circulation model. J Geophys Res 112:D16111. doi:10.1029/2006JD008346

  • Lim G, Suh A (2000) Diurnal and semidiurnal variations in the time series of 3-hourly assimilated precipitation by NASA GEOS-1. J Clim 13(16):2923–2940

    Article  Google Scholar 

  • Madden R, Julian P (1994) Observations of the 40 50-day tropical oscillation a review. Mon Wea Rev 122(5):814–837

    Article  Google Scholar 

  • Maloney D (2009) The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 22:711–729

    Article  Google Scholar 

  • Maloney E, Hartmann D (1998) Frictional moisture convergence in a composite life-cycle of the Madden–Julian oscillation. J Clim 11:2387–2403

    Google Scholar 

  • Mori S, Jun-Ichi H, Tauhid Y, Yamanaka M, Okamoto N, Murata F, Sakurai N, Hashiguchi H, Sribimawati T (2004) Diurnal land-sea rainfall peak migration over Sumatera Island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon Wea Rev 132(8):2021–2039

    Article  Google Scholar 

  • Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM study. J Clim 16(5):834–848

    Article  Google Scholar 

  • Nunes A, Cocke S (2004) Implementing a physical initialization procedure in a regional spectral model: impact on the short-range rainfall forecasting over South America. Tellus A 56(2):125–140

    Article  Google Scholar 

  • Oh J, Kim K, Lim G (2012) Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Clim Dyn 38:1167–1180

    Google Scholar 

  • Qian J (2008) Why precipitation is mostly concentrated over islands in the Maritime Continent. J Atmos Sci 65:1428–1441

    Article  Google Scholar 

  • Rauniyar P, Walsh K (2011) Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: influence of the MJO. J Clim 24:325–348

    Article  Google Scholar 

  • Rodgers K, Latif M, Legutke S (2000) Sensitivity of equatorial Pacific and Indian Ocean water masses to the position of the Indonesian throughflow. J Geophys Res 18:2941–2944

    Google Scholar 

  • Rui H, Wang B (1990) Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J Atmos Sci 47(3):357–379

    Article  Google Scholar 

  • Salby M, Hendon H (1994) Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J Atmos Sci 51:2207–2224

    Article  Google Scholar 

  • Sato T, Kimura F (2005) Diurnal Cycle of Convective Instability around the Central Mountains in Japan during the Warm Season. J Atmos Sci 62:1626–1636

    Article  Google Scholar 

  • Seo K, Kim K (2003) Propagation and initiation mechanisms of the Madden-Julian oscillation. J Geophys Res 108(4384):10.1029

    Google Scholar 

  • Slingo J, Sperber K, Boyle J, Ceron J, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy J (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12(5):325–357

    Article  Google Scholar 

  • Slingo J, Inness P, Neale R, Woolnough S, Yang G (2003) Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann Geophys 46:139–155

    Google Scholar 

  • Sui C, Lau K, Takayabu Y, Short D (1997) Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J Atmos Sci 54:639–655

    Article  Google Scholar 

  • Tian B, Waliser D E, Fetzer E J (2006) Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. J Geophys Res 30:L20704. doi:10.1029/2006GL027752

  • Wheeler M, Hendon H (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Wea Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Wu C, Hsu H (2009) Topographic Influence on the MJO in the Maritime Continent. J Clim 22:5433–5448

    Article  Google Scholar 

  • Yang G, Slingo J (2001) The diurnal cycle in the tropics. Mon Wea Rev 129(4):784–801

    Article  Google Scholar 

  • Yang S, Smith E (2006) Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J Clim 19:5190–5226

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

Download references

Acknowledgments

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3061 (PN12010). We would like to thank the anonymous reviewers for their thoughtful comments and, epecially Dr. Y. Ham, Dr. J. Lu, and Dr. S. Cocke for their helpful guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Ho Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, JH., Kim, BM., Kim, KY. et al. The impact of the diurnal cycle on the MJO over the Maritime Continent: a modeling study assimilating TRMM rain rate into global analysis. Clim Dyn 40, 893–911 (2013). https://doi.org/10.1007/s00382-012-1419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1419-8

Keywords

Navigation