Skip to main content

On atmospheric radiative feedbacks associated with climate variability and change

Abstract

Using the method of radiative ‘kernels’ an analysis is made of water vapour, lapse rate and ‘Planck’ (uniform vertical temperature) long wave feedbacks in models participating in the World Climate Research Program (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3). Feedbacks are calculated at climate change timescales from the A1B scenario, and at three ‘variability’ timescales from the corresponding preindustrial experiments: seasonal, interannual and decadal. Surface temperature responses show different meridional patterns for the different timescales, which are then manifest in the structures of the individual feedbacks. Despite these differences, mean water vapour feedback strength in models is positive for all models and timescales, and of comparable global magnitude across all timescales except for seasonal, where it is much weaker. Taking into consideration the strong positive lapse rate feedback at seasonal timescales, combined water vapour/lapse rate feedback is indeed similar across all timescales. To a good approximation, global water vapour feedback is found to be well represented by the temperature response along with an assumption of unchanged relative humidity under both variability and climate change. A comparison is also made of model feedbacks with reanalysis derived feedbacks for seasonal and interannual timescales. No strong relationships between individual modelled feedbacks at different timescales are evident: i.e., strong feedbacks in models at variability timescales do not in general predict strong climate change feedback, with the possible exception of seasonal timescales. There are caveats on this (and other) findings however, from uncertainties associated with the kernel technique and from, at times, very large uncertainties in estimating variability related feedbacks from temperature regressions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Allan RP, Ringer MA, Slingo A (2003) Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water vapour channel radiances. Q J R Meteorol Soc 129:3371–3389

    Article  Google Scholar 

  2. Andrews T, Forster PM (2008) CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys Res Lett 35:L04802. doi:10.1029/2007GL032273

    Article  Google Scholar 

  3. Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn 20:415–429

    Google Scholar 

  4. Bony S, Colman RA, Kattsov V, Allan RP, Bretherton CS, Dufresne J-L, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  5. Chung E-S, Soden BJ, Sohn B-J (2010a) Revisiting the determination of climate sensitivity from relationships between surface temperature and radiative fluxes. Geophys Res Lett 37:L20702. doi:10.1029/2010GL043051

    Article  Google Scholar 

  6. Chung E-S, Yeomans D, Soden BJ (2010b) An assessment of the climate feedback processes using satellite observations of clear-sky OLR. Geophys Res Lett 37:L20702. doi:10.1029/2010GL041889

    Article  Google Scholar 

  7. Colman RA (2001) On the vertical extent of atmospheric feedbacks. Clim Dyn 17:391–405

    Article  Google Scholar 

  8. Colman RA (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20:865–873

    Google Scholar 

  9. Colman RA, McAvaney BJ (2011) On tropospheric adjustment to forcing and climate feedbacks. Clim Dyn 36:1649–1658. doi:10.1007/s00382-011-1067-4

    Article  Google Scholar 

  10. Colman RA, Power SB (2010) Atmospheric feedbacks under unperturbed variability and transient climate change. Clim Dyn 34:919–934. doi:10.1007/s00382-009-0541

    Article  Google Scholar 

  11. Covey C et al (2000) The seasonal cycle in coupled ocean-atmosphere general circulation models. Clim Dyn 16:775–787

    Article  Google Scholar 

  12. de Forster PM, Gregory JM (2006) The climate sensitivity and its components diagnosed from earth radiation budget data. J Clim 19:39–52

    Article  Google Scholar 

  13. Dessler AE (2010) A determination of cloud feedback from climate variations over the past decade. Science 330:1523–1527

    Article  Google Scholar 

  14. Dessler AE, Wong S (2009) Estimates of the water vapour climate feedback during El Niño-Southern oscillation. J Clim 22. doi:10.1175/2009JCLI3052.1

  15. Dessler AE, Zhang Z, Yang P (2008) Water-vapour climate feedback inferred from climate fluctuations. Geophys Res Lett 35:L20704. doi:10.1029/2008GL035333

    Article  Google Scholar 

  16. Fels SB, Schwarzkopf MD (1975) The simplified exchange approximation: a new method for radiative transfer calculations. J Atmos Sci 32:1475–1488

    Article  Google Scholar 

  17. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  18. Gettelman A, Fu Q (2008) Observed and simulated upper tropospheric water vapor feedbacks. J Clim 21:3282–3289

    Article  Google Scholar 

  19. Gregory JM, Webb MJ (2008) Troposphere adjustment induces a cloud component in CO2 forcing. J Clim 21:58–71

    Article  Google Scholar 

  20. Hall A, Manabe S (1999) The role of water vapour feedback in unperturbed climate variability and global warming. J Clim 12:2327–2346

    Article  Google Scholar 

  21. Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502. doi:10.1029/2005GL025127

    Article  Google Scholar 

  22. Held IM, Shell KM (2012) Using relative humidity as a state variable in climate feedback analysis. J Clim 25:2578–2582. doi:10.1175/JCLI-D-11-00721.1

    Google Scholar 

  23. Held IM, Soden BJ (2000) Water vapour feedback and global warming. Ann Rev Energy Environ 25:441–475

    Article  Google Scholar 

  24. John VO, Soden BJ (2007) Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys Res Lett 34:L18704. doi:10.1029/2007GL030429

    Article  Google Scholar 

  25. Jonko AK, Shell KM, Sanderson BM, Danabasoglu G (2012) Climate feedbacks in CCSM3 under changing CO2 forcing. Part I: adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings. J Clim. doi:10.1175/JCLI-D-11-00524.1

  26. Knutti R, Meehl GA, Allen MR, Stainforth DA (2006) Constraining climate sensitivity from the seasonal cycle in surface temperature. J Clim 19:4224–4233

    Article  Google Scholar 

  27. Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  28. Lindzen RS, Kirtmann B, Kirk-Davidoff D, Schnieder EK (1995) Seasonal surrogates for climate. J Clim 8:1861–1864

    Article  Google Scholar 

  29. Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38:L08703. doi:10.1029/2011GL046864

    Article  Google Scholar 

  30. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  31. Meehl GA et al. (2007b) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  32. Minschwaner K, Dessler AE (2004) Water vapor feedback in the tropical upper troposphere: model results and observations. J Clim 17:1272–1282

    Article  Google Scholar 

  33. Minschwaner K, Dessler AE, Parnchai S (2006) Multi-model analysis of the water vapour feedback in the tropical upper troposphere. J Clim 19:5455–5464

    Article  Google Scholar 

  34. Pennell C, Reichler T (2011) On the effective number of climate models. J Clim 24:2358–2367. doi:10.1175/2010JCLI13814.1

    Article  Google Scholar 

  35. Power SB, Delage F, Colman RA, Moise AF (2012) Consensus on 21st century rainfall projections in climate models more widespread than previously thought. J Clim (in press)

  36. Randall DA et al. (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  37. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407

    Article  Google Scholar 

  38. Reichler T, Dameris M, Sausen R (2003) Determining the tropopause height from gridded data. Geophys Res Lett 30:2042. doi:10.1029/2003GL018240

    Article  Google Scholar 

  39. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  40. Sanderson BM, Shell K, Ingram W (2009) Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs. Clim Dyn 35. doi:10.1007/s00382–009–0661–1

  41. Schneider T, O’Gorman PA (2008) Moist convection and the thermal stratification of the extratropical troposphere. J Atmos Sci 65:3571–3583

    Article  Google Scholar 

  42. Shell K, Kiehl J, Shields C (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J Clim 21:2269–2282

    Article  Google Scholar 

  43. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  44. Soden BJ, Held IM, Colman RA, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520. doi:10.1175/2007JCLI2110.1

    Article  Google Scholar 

  45. Suarez MJ et al. (2008) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0 and 5.2.0, vol 27. NASA Tech. Memo NASA/TM-2008-104606, 101 pp

  46. Sun Z, Rikus L (1999) Improved application of ESFT to inhomogeneous atmosphere. J Geophys Res 104:6291–6303

    Article  Google Scholar 

  47. Sun D-Z, Yu Y, Zhang T (2009) Tropical water vapour and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22:1287–1304

    Article  Google Scholar 

  48. Taylor KE, Stouffer RJ, Meehl GA (2009) A summary of the CMIP5 experiment design. http://www-pcmdi.llnl.gov/

  49. Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño-Southern oscillation and global atmospheric surface temperatures. J Geophys Res 107. doi:10.1029/2000JD000298

  50. Tsushima Y, Abe-Ouchi A, Manabe S (2005) Radiative damping of annual variation in global mean surface temperature: comparison between observed and simulated feedback. Clim Dyn 24:591–597

    Article  Google Scholar 

  51. Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  52. Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  53. Wu Q, Karoly DJ, North GR (2008) Role of water vapour feedback on the amplitude of season cycle in the global mean surface air temperature. Geophys Res Lett 35:L08711. doi:10.1029/2008GL033454

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Aurel Moise and Jeff Kepert for assistance with the statistical analysis. Thanks also to Scott Power and Josephine Brown for providing helpful comments on an earlier draft, and to Karen Shell and an anonymous reviewer for thorough and helpful review comments. We acknowledge the modelling groups for making their simulations available for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the CMIP3 model output, and the WCRP’s Working Group on Coupled Modelling (WGCM) for organizing the model data analysis activity. The WCRP CMIP3 multi model dataset is supported by the Office of Science, U.S. Department of Energy. This work has been undertaken as part of the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and Energy Efficiency, the Bureau of Meteorology and CSIRO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. A. Colman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colman, R.A., Hanson, L.I. On atmospheric radiative feedbacks associated with climate variability and change. Clim Dyn 40, 475–492 (2013). https://doi.org/10.1007/s00382-012-1391-3

Download citation

Keywords

  • Climate change
  • Feedbacks
  • Climate variability
  • General circulation models