Skip to main content

Advertisement

Log in

The role of vegetation feedbacks on Greenland glaciation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The role of vegetation feedbacks for the process of ice-sheet evolution could potentially be important in realistically modeling the past and future evolution of the Greenland ice-sheet. We use a fully coupled atmosphere–ocean model to assess the response of the climate when the Greenland ice-sheet is replaced with a number of fixed vegetation types (bare soil, broadleaf and needleleaf trees, C3 and C4 grasses and shrubs) in conjunction with loaded and unloaded bedrock orography. These sensitivity experiments show that albedo changes dominate the climate response during the summer months while temperature changes during winter are attributed to altitude change and changes in atmospheric circulation over Greenland. Snow-free summers occur for all fixed vegetation types, except for high altitude eastern regions for bare soil. We perform further simulations with dynamic vegetation resulting in dominant shrub coverage over central and southern Greenland with grasses supported in the north. Ice-sheet modeling shows significant regrowth of the Greenland ice-sheet can occur for a bare soil surface type, dependent on ice-sheet model parameters, while Greenland remains almost ice-free for needleleaf tree coverage. Furthermore, a realistically vegetated Greenland can only support a small amount of ice-sheet regrowth implying multi-stability of the Greenland ice-sheet under a preindustrial climate. This study highlights the importance of considering vegetation climate ice-sheet interactions, and uncertainty in ice-sheet model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460

    Article  Google Scholar 

  • Bamber JL, Layberry RL, Gogineni P (2001) A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors. J Geophys Res 106(D24):33773–33780

    Article  Google Scholar 

  • Bennike O, Bocher J (1994) Land biotas of the last interglacial glacial cycle on Jameson Land, East Greenland. Boreas 23(4):479–487

    Article  Google Scholar 

  • Beringer J, Chapin FS, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric For Meteorol 131(3–4):143–161

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Article  Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24(6):563–576

    Article  Google Scholar 

  • Cox P, Huntingford C, Harding RJ (1998) A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J Hydrol 212–213:79–94

    Article  Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15(3):183–203

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6813):184–187

    Article  Google Scholar 

  • Crowley TJ, Baum SK (1995) Is the Greenland ice-sheet bistable? Paleoceanography 10(3):357–363

    Article  Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421(6920):245–249

    Article  Google Scholar 

  • Dethloff K, Dorn W, Rinke A, Fraedrich K, Junge M, Roeckner E, Gayler V, Cubasch U, Christensen JH (2004) The impact of Greenland’s deglaciation on the Arctic circulation. Geophys Res Lett 31(L19201). doi:10.1029/2004GL020714

  • Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34(10). doi:10.1029/2007GL029516

  • Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30(17):81–84

    Article  Google Scholar 

  • Ganachaud A (2003) Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J Geophys Res Oceans 108(C7). doi:10.1029/2002JC001565

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168

    Article  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11(5):1395–1411

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J Geophys Res 110(D13108). doi:10.1029/2004JD005641

  • Huybrechts P, T’Siobbel S (1997) A three-dimensional climate-ice-sheet model applied to the last glacial maximum. Ann Glaciol 25:333–339

    Google Scholar 

  • Jungclaus JH (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33(L17708). doi:10.1029/2006GL026815

  • Junge MM, Blender R, Fraedrich K, Gayler V, Luksch U, Lunkeit F (2005) A world without Greenland: impacts on the Northern Hemisphere winter circulation in low- and high-resolution models. Clim Dyn 24(2–3):297–307. doi:10.1007/s00382-004-0501-2

    Article  Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res Atmos 108(D19). doi:10.1029/2002JD002559

  • Kelly EF, Yonker CM (2004) Factors of soil formation/time. In: Daniel H (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 536–539

  • Koenig SJ, DeConto RM, Pollard D (2011) Late Pliocene to Pleistocene sensitivity of the Greenland ice sheet in response to external forcing and internal feedbacks. Clim Dyn 37(5–6):1247–1268. doi:10.1007/s00382-011-1050-0

    Article  Google Scholar 

  • Kubatzki C, Claussen M, Calov R, Ganopolski A (2006) Sensitivity of the last glacial inception to initial and surface conditions. Clim Dyn 27(4):333–344

    Article  Google Scholar 

  • Lambeck K, Nakiboglu SM (1980) Seamount loading and stress in the ocean lithosphere. J Geophys Res 85(Nb11):6403–6418

    Article  Google Scholar 

  • Layberry RL, Bamber JL (2001) A new ice thickness and bed data set for the Greenland ice sheet 2. Relationship between dynamics and basal topography. J Geophys Res 106(24):33781–33788

    Article  Google Scholar 

  • Letréguilly A, Huybrechts P, Reeh N (1991) Steady-state characteristics of the Greenland ice-sheet under different climates. J Glaciol 37(125):149–157

    Google Scholar 

  • Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37(10):2550–2562

    Article  Google Scholar 

  • Lunt DJ, de Noblet-Ducoudre N, Charbit S (2004) Effects of a melted greenland ice sheet on climate, vegetation, and the cryosphere. Clim Dyn 23(7–8):679–694

    Article  Google Scholar 

  • Lunt DJ, Foster GL, Haywood AM, Stone EJ (2008) Late pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454(7208):1102–1105

    Article  Google Scholar 

  • Lunt DJ, Haywood AM, Foster GL, Stone EJ (2009) The Arctic cryosphere in the Mid-Pliocene and the future. Philos Trans R Soc Lond Ser A 367(1886):49–67

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394

    Article  Google Scholar 

  • Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim Dyn 21(7–8):515–537

    Article  Google Scholar 

  • Murphy BF, Marsiat I, Valdes PJ (2002) Atmospheric contributions to the surface mass balance of Greenland in the HadAM3 atmospheric model. J Geophys Res 107(D21):4556. doi:4510.1029/2001JD000389

    Article  Google Scholar 

  • Payne AJ (1999) A thermomechanical model of ice flow in West Antarctica. Clim Dyn 15(2):115–125

    Article  Google Scholar 

  • Petersen GN, Kristjánsoon JE, Ólafsson H (2004) Numerical simulations of Greenland’s impact on the Northern Hemisphere winter circulation. Tellus 56(2):102–111

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16(2–3):123–146

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Cilmate models and their evaluation. In: Solomon SD, Manning QM, Chen Z et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 589–662

  • Reeh N (1991) Paramterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59(3):113–128

    Google Scholar 

  • Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18(17):3409–3427

    Article  Google Scholar 

  • Ridley J, Gregory JM, Huybrechts P, Lowe J (2010) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn 35(6):1065–1073. doi:10.1007/s00382-009-0646-0

    Article  Google Scholar 

  • Ritz C, Fabre A, Letréguilly A (1997) Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle. Clim Dyn 13(1):11–24

    Article  Google Scholar 

  • Rutt IC, Hagdorn M, Hulton NRJ, Payne AJ (2009) The Glimmer community ice sheet model. J Geophys Res 114(F02004). doi:10.1029/2008JF001015

  • Shaver GR, Bret-Harte SM, Jones MH, Johnstone J, Gough L, Laundre J, Chapin FS (2001) Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82(11):3163–3181

    Article  Google Scholar 

  • Smethie WM, Fine R (2001) Rates of North Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep Sea Res Part 1(48):189–215

    Article  Google Scholar 

  • Stone EJ, Lunt DJ, Rutt IC, Hanna E (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4:397–417. doi:10.5194/tc-4-397-2010

    Article  Google Scholar 

  • Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(19):3213–3226

    Article  Google Scholar 

  • Toniazzo T, Gregory JM, Huybrechts P (2004) Climatic impact of a Greenland deglaciation and its possible irreversibility. J Clim 17(1):21–33

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson K, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars AC, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3013

    Article  Google Scholar 

  • van de Berg WJ, van den Broeke M, Ettema J, van Meijgaard E, Kaspar F (2011) Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat Geosci 4(10):679–683. doi:10.1038/Ngeo1245

    Article  Google Scholar 

  • Vizcaíno M, Milkolajewicz U, Groger M, Maier-reimer E, Schurgers G, Winguth AME (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Clim Dyn 31(6):665–690. doi:10.1007/s00382-008-0369-7

    Article  Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Schwenninger JL, Nathan R, Armitage S, de Hoog CJ, Alfimov V, Christl M, Beer J, Muscheler R, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested Southern Greenland. Science 317(5834):111–114

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Environment Research Council. ECMWF ERA-40 data used in this publication have been provided by ECMWF via the BADC server.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma J. Stone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1.12 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, E.J., Lunt, D.J. The role of vegetation feedbacks on Greenland glaciation. Clim Dyn 40, 2671–2686 (2013). https://doi.org/10.1007/s00382-012-1390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1390-4

Keywords

Navigation