Skip to main content

The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions

Abstract

In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600 years. The model used is the Bergen Climate Model, a fully coupled atmosphere–ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole–to–equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high–latitude North Pacific the ocean loses more heat, and large–scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere–stratosphere coupling, tropical–extratropical teleconnections and extratropical ocean–atmosphere interactions for describing NPDV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño–like response to volcanic forcing. Nature 426:274–278

    Article  Google Scholar 

  • Alexander MA, Deser C, Timlin MS (1999) The re–emergence of SST anomalies in the North Pacific Oecan. J Climate 12:2419–2431

    Article  Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15:2205–2231

    Article  Google Scholar 

  • Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J Climate 14:2105–2128

    Article  Google Scholar 

  • Bleck R, Smith LT (1990) A wind–driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. 1. Model development and supporting experiments. J Geophys Res 95:3273–3285

    Article  Google Scholar 

  • Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity–driven thermocline transients in a wind–and thermohaline–forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505

    Article  Google Scholar 

  • Boville BA (1983) The influence of the polar night jet on the tropospheric circulation in a GCM. J Atmos Sci 41:1132–1142

    Article  Google Scholar 

  • Brasseur G, Granier C (1992) Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion. Science 257:1239–1242

    Article  Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298

    Article  Google Scholar 

  • Christiansen B (2008) Volcanic eruptions, large–scale modes in the Northern Hemisphere, and El Niño–Southern Oscillation. J Climate 21:910–922

    Article  Google Scholar 

  • Church JA, White NJ, Arblaster JM (2005) Significant decadal–scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438:74–77

    Article  Google Scholar 

  • Crowley TJ, Baum SK, Kim K–Y, Hegerl GC, Hyde WT (2003) Modeling ocean heat content changes during the last millennium. Geophys Res Lett 30. doi:10.1029/2003GL017801

  • D’Orgeville M, Peltier WR (2007) On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: might they be related? Geophys Res Lett 34. doi:10.1029/2007GL031584

  • D’Orgeville M, Peltier WR (2009) Implications of both statistical equilibrium and global warming simulations with CCSM3. Part I: on the decadal variability in the North Pacific basin. J Climate 22:5277–5296

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Climate Dyn 10:249–266

    Article  Google Scholar 

  • Deser C, Phillips A (2006) Simulation of the 1976/77 climate transition over the North Pacific: sensitivity to tropical forcing. J Climate 19:6170–6180

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Climate 17:3109–3124

    Article  Google Scholar 

  • Dettinger MD, Battisti DS, Garreaud RD, McCabe GJ, Bitz CM (2001) Interhemispheric effects of interannual and decadal ENSO–like climate variations on the Americas. In: Markgraf V (ed) Present and past interhemispheric climate linkages in the Americas and their societal effects. Cambridge University Press, Cambridge, pp 1–16

    Google Scholar 

  • Dommenget D, Latif M (2008) Generation of hyper climate modes, Geophys Res Lett 35. doi:10.1029/2007GL031087

  • Furevik T, Bentsen M, Drange H, Kindem IKT, KvamstØ NG, Sorteberg A (2003) Description and validation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Furtado JC, Lorenzo ED, Schneider N, Bond NA (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Climate 24:3049–3067

    Article  Google Scholar 

  • Gillett NP (2005) Climate modelling: Northern Hemisphere circulation. Nature 437:496

    Article  Google Scholar 

  • Gillett NP, Weaver AJ, Zwiers FW, Wehner MF (2004) Detection of volcanic influence on global precipitation. Geophys Res Lett 31. doi:10.1029/2004GL02004

  • Graf H-F, Kirchner I, Robock A, Schult I (1993) Pinatubo eruption winter climate effects: model versus observations. Climate Dyn 9:81–93

    Google Scholar 

  • Graf H-F, Perlwitz J, Kirchner I (1994) Northern hemisphere tropospheric mid–latitude circulation after violent volcanic eruptions. Contrib Atmos Phys 67:3–13

    Google Scholar 

  • Grissino–Mayer HD (1995) Tree–ring reconstructions of climate and fire history at EL Malpais National Monument, New Mexico. PhD dissertation, The University of Arizona

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hansen JE, Nazarenko L, Ruedy R, Sato M, Willis J, Genio AD, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance; confirmation and implications. Science 308:1431–1435

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models I: theory. Tellus 28:473–485

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40–year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  • Kodera K (1994) Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter. J Geophys Res 99:1273–1282

    Article  Google Scholar 

  • Kodera K, Chiba M, Yamazaki K, Shibata K (1991) A possible influence of the polar night stratospheric jet on the subtropical tropospheric jet. J Meteorol Soc Jpn 69:715–721

    Google Scholar 

  • Kodera K, Kuroda Y, Pawson S (2000) Stratospheric sudden warmings and slowly propagating zonal–mean zonal wind anomalies. J Geophys Res 105:12351–12359

    Article  Google Scholar 

  • Krakauer NY, Randerson JT (2003) Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Global Biogeoch Cycles 17:1118

    Article  Google Scholar 

  • Kuroda Y, Kodera K (1999) Role of planetary waves in the stratosphere–troposphere coupled variability in the Northern Hemisphere winter. Geophys Res Lett 26:2375–2378

    Article  Google Scholar 

  • Latif M (1998) Dynamics of interdecadal variability in coupled ocean–atmosphere models. J Climate 11:602–624

    Article  Google Scholar 

  • Latif M (2006) On North Pacific multidecadal climate variability. J Climate 19:2906–2915

    Article  Google Scholar 

  • Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637

    Article  Google Scholar 

  • Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Climate 9:2407–2423

    Article  Google Scholar 

  • Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Climate 9:2036–2057

    Article  Google Scholar 

  • Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45. doi:10.1029/2005RG000172

  • Liu Z, Yang H (2003) Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys Res Lett 30. doi: 10.1029/2002GL016492

  • Liu Z, Wu L, Galimore R, Jacob R (2002) Search for the origins of Pacific decadal climate variability. Geophys Res Lett 29. doi:10.1029/2001GL013735

  • Mann ME, Zhang ZH, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dnamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Climate 2:566–593

    Article  Google Scholar 

  • Miller AJ, Schneider N (2000) Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Prog Oceanogr 47:355–379

    Article  Google Scholar 

  • Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies. Climate Dyn 9:287–302

    Article  Google Scholar 

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Climate Dyn 22:605–623

    Article  Google Scholar 

  • Ostermeier GM, Wallace JM (2003) Trends in the North Atlantic Oscillation–Northern hemisphere annular mode during the twentieth century. J Climate 16:336–341

    Article  Google Scholar 

  • Otterå OH (2008) Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv Atmos Sci 25:213–226

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre–industrial climate in Bergen Climate Model (version 2): model description and large–scale circulation features. Geosci Model Dev 2:197–212

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Peng YB, Shen C, Wang WC, Xu Y (2010) Response of summer precipitation over Eastern China to large volcanic eruptions. J Climate 23:818–824

    Article  Google Scholar 

  • Perlwitz J, Graf H-F, Voss R (2000) The leading variability mode of the coupled troposphere–stratosphere winter circulation in different climate regimes. J Geophys Res 105:6915–6926

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2002JD002670

  • Robock A (1983) Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J Atmos Sci 40:986–997

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  • Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Climate 8:1086–1103

    Article  Google Scholar 

  • Salas–Melia D (2002) A global coupled sea ice–ocean model. Ocean Model 4:137–172

    Article  Google Scholar 

  • Scaife A, Knight J, Vallis G, Folland C (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715. doi:10.1029/2005GL023226

    Article  Google Scholar 

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Climate 18:4355–4373

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought induced fire occurrence in Rocky mountain subalpine forests. Ecol Appl 15:2000–2014

    Article  Google Scholar 

  • Shen C, Wang WC, Hao Z, Gong W (2008) Characteristics of anomalous precipitation events over eastern China during the past five centuries. Climate Dyn 31:463–476

    Article  Google Scholar 

  • Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J Geophys Res 107:D24. doi:10.1029/2002JD002090

    Article  Google Scholar 

  • Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. doi:10.1029/2005JD006286

    Article  Google Scholar 

  • Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114. doi:10.1029/2008JD011673

  • Sugimoto S, Hanawa K (2009) Decadal and interdecadal variations of the Aleutian Low activity and their relation to upper oceanic variations over the North Pacific. J Meteorol Soc Jpn 87:601–614

    Article  Google Scholar 

  • Sun JQ, Wang HJ (2006) The relationship between Arctic Oscillation and Pacific Decadal Oscillation. Chin Sci Bull 51:75–79

    Article  Google Scholar 

  • Swingedouw D, Terray L, Cassou C, Voldoire A, Salas–Mélia D, Servonnat J (2011) Natural forcing of climate during the last millennium: fingerprint of solar variability. Climate Dyn 36:1349–1364

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part II: trends. J Climate 13:1018–1036

    Article  Google Scholar 

  • Trenberth KE, Dai T (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Climate Dyn 9:303–319

    Article  Google Scholar 

  • Wang HJ (2002) The instability of the East Asian summer monsoon–ENSO relations. Adv Atmos Sci 19:1–11

    Article  Google Scholar 

  • Wang HJ, Sun JQ, Fan K (2007) Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China Series D 50:1409–1416

    Article  Google Scholar 

  • White WB, Cayan DR (1998) Quasi–periodicity and global symmetries in interdecadal upper ocean temperature variability. J Geophys Res 103:21335–21354

    Article  Google Scholar 

  • Wu L, Liu Z, Gallimore R, Jacob R, Lee D, Zhong Y (2003) Pacific decadal variability: the tropical Pacific mode and the North Pacific mode. J Climate 16:1101–1120

    Article  Google Scholar 

  • Wu L, Lee D, Liu Z (2005) The 1976/77 North Pacific climate regime shift: the role of subtropical ocean adjustment and coupled ocean–atmosphere feedbacks. J Climate 18:5125–5140

    Article  Google Scholar 

  • Yang H, Liu Z (2005) Tropical–extratropical climate interaction as revealed in idealized coupled climate model experiments. Climate Dyn 24:863–879

    Article  Google Scholar 

  • Yang XQ, Zhu YM, Xie Q, Ren XJ, Xu GY (2004) Advances in studies of Pacific Decadal Oscillation. Chin J Atmos Sci 28:979–992 (in Chinese)

    Google Scholar 

  • Yeh S-W, Kang YJ, Noh Y, Miller AJ (2011) The North Pacific climate transitions of the winters of 1976/77 and 1988/89. J Climate 24:1170–1183

    Article  Google Scholar 

  • Yoon J, Yeh S-W (2010) Influence of the Pacific Decadal Oscillation on the relationship between El Niño and the Northeast Asian Summer Monsoon. J Climate 23:4525–4537

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal–to–centennial fluctuations dominate global temperature evolution over the last millennium. Geophy Res Lett 37: L14702. doi:10.1029/2010GL043717

  • Zanchettin D, Timmreck C, Graf HF, Rubino A, Lorenz S, Lohmann K, Krüger K, Jungclaus JH (2011) Bi–decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn. doi:10.1007/s00382-011-1167-1

  • Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34. doi:10.1029/2007GL031601

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO–like interdecadal variability: 1900–93. J Climate 10:1004–1020

    Article  Google Scholar 

  • Zhong Y, Liu Z (2009) On the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific Ocean. J Phys Oceanogr 39:2052–2076

    Article  Google Scholar 

  • Zhong Y, Liu Z, Jacob R (2008) Origin of Pacific Multidecadal variability in community climate system model, Version 3 (CCSM3): a combined statistical and dynamical assessment. J Climate 21:114–133

    Article  Google Scholar 

  • Zhong Y, Miller GH, Otto–Bliesner BL, Holland MM, Bailey DA, Schneider DP, Geirsdottir A (2011) Centennial–scale climate change from decadally–paced explosive volcanism: a coupled sea ice–ocean mechanism. Clim Dyn 37:2373–2387

    Article  Google Scholar 

  • Zhou BT, Wang HJ (2006) Interannual and interdecadal variations of the Hadley circulation and its connection with tropical sea surface temperature. Chinese J Geophys 49:1271–1278 (in Chinese)

    Google Scholar 

  • Zhou BT, Wang HJ (2008) Relationship between Hadley circulation and sea ice extent in the Bering Sea. Chin Sci Bull 53:444–449

    Article  Google Scholar 

  • Zhou BT, Wang HJ, Cui X (2008) Significant relationship between Hadley circulation and North Pacific Oscillation. Chinese J Geophys 51:999–1006 (in Chinese)

    Google Scholar 

  • Zhou BT, Zhao P, Cui X (2010) Linkage between the Asian-Pacific oscillation and the sea surface temperature in the North Pacific. Chin Sci Bull 55:1193–1198

    Article  Google Scholar 

  • Zhu YL, Wang HJ, Zhou W, Ma JH (2010) Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn 36:1463–1473

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stefan Soblowski, Dr. Jianqi Sun and Prof. Shuanglin Li for useful comments to the manuscript. Comments and helpful suggestions from the editor and two anonymous reviewers are also greatly appreciated. This work was supported by the National Basic Research Program of China (Grant No. 2010CB951901), the CAS Strategic Priority Research Program (Grant No. XDA05110203) and the Research Council of Norway through the DecCen project (Exploring Decadal to Century Scale Variability and Changes in the East Asian Climate during the last Millennium). The research leading to these results has received funding from the European Union’s Seventh Framework programme (FP7/2007-2013) under grant agreement No. 243908, “Past4Future. Climate change–Learning from the past climate”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2633 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, T., Otterå, O.H., Gao, Y. et al. The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Clim Dyn 39, 2917–2936 (2012). https://doi.org/10.1007/s00382-012-1373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1373-5

Keywords

  • Strong tropical volcanic eruptions
  • North polar vortex
  • North Pacific Decadal Variability
  • Coupled model
  • Ocean–atmosphere interaction
  • Troposphere–stratosphere coupling