Climate Dynamics

, Volume 39, Issue 11, pp 2695–2712 | Cite as

Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH

  • Bert WoutersEmail author
  • Sybren Drijfhout
  • Wilco Hazeleger


The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50–60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 106 m3 s−1) is identified, which manifests itself as a monopole causing the overturning to simultaneously strengthen (/weaken) and deepen (/shallow) as a whole. Eight years before the AMOC peaks, density in the Labrador-Irminger Sea region reaches a maximum, triggering deep water formation. This density change is caused by a counterclockwise advection of temperature and salinity anomalies at lower latitudes, which we relate to the north-south excursions of the subpolar-subtropical gyre boundary and variations in strength and position of the subpolar gyre and the North Atlantic Current. The AMOC fluctuations are not directly forced by the atmosphere, but occur in a delayed response of the ocean to forcing by the North Atlantic Oscillation, which initiates “intergyre”-gyre fluctuations. Associated with the AMOC is a 60-year sea surface temperature variability in the Atlantic, with a pattern and timescale showing similarities with the real-world Atlantic Multidecadal Variability. This good agreement with observations lends a certain degree of credibility that the mechanism that is described in this article could be seen as representative of the real climate system.


Meridional overturning circulation Decadal variability North Atlantic Ocean Coupled model 



The authors are grateful to Shuting Yang and Torben Schmidt of the Danish Meteorological Institute for performing the pre-industrial control run and providing us with the data. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n212643 (THOR project). Geert Jan van Oldenborgh of KNMI is acknowledged for the fruitful discussions and his comments on a draft version of this article. We thank the editor and two anonymous referees for their constructive comments.


  1. Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE (2006) World Ocean Atlas 2005, volume 2: Salinity. NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, DCGoogle Scholar
  2. Bouillon S, ÁngelMorales Maqueda M, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Model 27:174–184. doi: 10.1016/j.ocemod.2009.01.004 CrossRefGoogle Scholar
  3. Bryan FO, Danabasoglu G, Nakashiki N, Yoshida Y, Kim DH, Tsutsui J, Doney SC (2006) Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J Clim 19:2382. doi: 10.1175/JCLI3757.1 CrossRefGoogle Scholar
  4. Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869CrossRefGoogle Scholar
  5. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi J, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  6. Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J Clim 21:5524. doi: 10.1175/2008JCLI2019.1 CrossRefGoogle Scholar
  7. de Coëtlogon G, Frankignoul C, Bentsen M, Delon C, Haak H, Masina S, Pardaens A (2006) Gulf stream variability in five oceanic general circulation models. J Phys Oceanogr 36:2119. doi: 10.1175/JPO2963.1 CrossRefGoogle Scholar
  8. Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011. doi: 10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2 CrossRefGoogle Scholar
  9. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495. doi: 10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2 CrossRefGoogle Scholar
  10. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  11. Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys Res Lett 24:257–260. doi: 10.1029/96GL03927 CrossRefGoogle Scholar
  12. Dong B, Sutton RT (2001) The dominant mechanisms of variability in Atlantic ocean heat transport in a coupled ocean-atmosphere GCM. Geophys Res Lett 28:2445–2448. doi: 10.1029/2000GL012531 CrossRefGoogle Scholar
  13. Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18:1117–1135. doi: 10.1175/JCLI3328.1 CrossRefGoogle Scholar
  14. D’Orgeville M, Peltier WR (2009) Implications of both statistical equilibrium and global warming simulations with CCSM3. Part II: on the multidecadal variability in the North Atlantic Basin. J Clim 22:5298. doi: 10.1175/2009JCLI2775.1 CrossRefGoogle Scholar
  15. Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37:L02, 709. doi: 10.1029/2009GL041609 CrossRefGoogle Scholar
  16. ECMWF (2006) IFS documentation. Available at
  17. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691. doi: 10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2 CrossRefGoogle Scholar
  18. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280. doi: 10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2 CrossRefGoogle Scholar
  19. Emery W, Thomson R (1997) Data analysis methods in physical oceanography. Pergamon Press, OxfordGoogle Scholar
  20. Frankcombe LM, von der Heydt A, Dijkstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638. doi: 10.1175/2010JCLI3471.1 CrossRefGoogle Scholar
  21. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J Clim 16:696–705. doi: 10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2 CrossRefGoogle Scholar
  22. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–160. doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2 CrossRefGoogle Scholar
  23. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1. doi: 10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  24. Hazeleger W, Severijns C, Semmler T, Ştefnescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, Van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363. doi: 10.1175/2010BAMS2877.1,
  25. Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79:231–244. doi: 10.1016/j.jmarsys.2009.11.002 CrossRefGoogle Scholar
  26. Häkkinen S, Rhines PB (2004) Decline of subpolar north atlantic circulation during the 1990s. Science 304(5670):555–559. doi: 10.1126/science.1094917, Google Scholar
  27. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 N. J Climate. doi: 10.1175/2010JCLI3997.1,
  28. Joyce TM, Zhang R (2010) On the path of the gulf stream and the Atlantic meridional overturning circulation. J Clim 23:3146–3154. doi: 10.1175/2010JCLI3310.1 CrossRefGoogle Scholar
  29. Joyce TM, Deser C, Spall MA (2000) The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation*. J Clim 13:2550–2569. doi: 10.1175/1520-0442(2000)013<2550:TRBDVO>2.0.CO;2 CrossRefGoogle Scholar
  30. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985. Google Scholar
  31. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708CrossRefGoogle Scholar
  32. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17, 706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  33. Kushnir Y (1994) Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. J Clim 7:141–157. doi: 10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2 CrossRefGoogle Scholar
  34. Kwon YO, Frankignoul C (2011) Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Clim Dyn 412+. doi: 10.1007/s00382-011-1040-2
  35. Kwon YO, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson LA (2010) Role of the gulf stream and Kuroshio-Oyashio Systems in Large-Scale Atmosphere-Ocean Interaction: A Review. J Clim 23:3249–3281. doi: 10.1175/2010JCLI3343.1 CrossRefGoogle Scholar
  36. Large WG, Danabasoglu G (2006) Attribution and Impacts of Upper-Ocean Biases in CCSM3. J Clim 19:2325. doi: 10.1175/JCLI3740.1 CrossRefGoogle Scholar
  37. Laurian A, Drijfhout SS, Hazeleger W, van Dorland R (2009) Global surface cooling: the atmospheric fast feedback response to a collapse of the thermohaline circulation. Geophys Res Lett 36:L20,708. doi: 10.1029/2009GL040938 CrossRefGoogle Scholar
  38. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World Ocean Atlas 2005, volume 1: temperature. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, DCGoogle Scholar
  39. Lumpkin R, Speer K (2003) Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J Phys Oceanogr 33:1902. doi: 10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2 CrossRefGoogle Scholar
  40. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  41. Marshall J, Johnson H, Goodman J (2001) A Study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421. doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2 CrossRefGoogle Scholar
  42. Medhaug I, Langehaug H, Eldevik T, Furevik T, Bentsen M (2011) Mechanisms for decadal scale variability in a simulated atlantic meridional overturning circulation. Clim Dyn 1–17. doi: 10.1007/s00382-011-1124-z
  43. Meehl GA, Hu A (2006) Megadroughts in the Indian Monsoon Region and Southwest North America and a Mechanism for Associated Multidecadal Pacific Sea Surface Temperature Anomalies. J Clim 19:1605. doi: 10.1175/JCLI3675.1 CrossRefGoogle Scholar
  44. Meinen CS, Baringer MO, Garcia RF (2010) Florida current transport variability: an analysis of annual and longer-period signals. Deep Sea Res Part I: Oceanogr Res Pap 57(7):835–846. doi: 10.1016/j.dsr.2010.04.001,
  45. Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2011) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 584. doi: 10.1007/s00382-011-1172-4
  46. Mignot J, Frankignoul C (2005) The Variability of the Atlantic Meridional Overturning Circulation, the North Atlantic Oscillation, and the El Niño-Southern Oscillation in the Bergen Climate Model. J Clim 18:2361–2375. doi: 10.1175/JCLI3405.1 CrossRefGoogle Scholar
  47. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi: 10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  48. Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37:L24702. doi: 10.1029/2010GL045560 CrossRefGoogle Scholar
  49. Pickart RS, Torres DJ, Clarke RA (2002) Hydrography of the Labrador Sea during active convection. J Phys Oceanogr 32:428–457. doi: 10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2 CrossRefGoogle Scholar
  50. Rypina II, Pratt LJ, Lozier MS (2011) Near-surface transport pathways in the North Atlantic Ocean: looking for throughput from the subtropical to the subpolar gyre. J Phys Oceanogr 41:911–925CrossRefGoogle Scholar
  51. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726. doi: 10.1038/367723a0 CrossRefGoogle Scholar
  52. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365. doi: 10.1175/JCLI3689.1 CrossRefGoogle Scholar
  53. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi:  10.1126/science.1109496 Google Scholar
  54. Te Raa LA, Dijkstra HA (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32:138–160. doi: 10.1175/1520-0485(2002)032<0138:IOTTOC>2.0.CO;2 CrossRefGoogle Scholar
  55. Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  56. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi: 10.1029/2011GL048712 CrossRefGoogle Scholar
  57. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  58. Valcke S (2006) OASIS3 User Guide (prism_2-5). PRISM Support Initiative Report No 3, 64 ppGoogle Scholar
  59. van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12CrossRefGoogle Scholar
  60. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic Thermohaline circulation. J Clim 17:4498–4511. doi: 10.1175/3219.1 CrossRefGoogle Scholar
  61. Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741. doi: 10.1007/s00382-008-0383-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Bert Wouters
    • 1
    Email author
  • Sybren Drijfhout
    • 1
  • Wilco Hazeleger
    • 1
  1. 1.De BiltThe Netherlands

Personalised recommendations