Climate Dynamics

, Volume 40, Issue 1–2, pp 155–173 | Cite as

Improved confidence in regional climate model simulations of precipitation evaluated using drought statistics from the ENSEMBLES models

  • Cathrine Fox MauleEmail author
  • Peter Thejll
  • Jens H. Christensen
  • Synne H. Svendsen
  • Jamie Hannaford


An ensemble of regional climate model simulations from the European framework project ENSEMBLES is compared with observations of low precipitation events across a number of European regions. We characterize precipitation deficits in terms of two drought indices, the Standardized Precipitation Index and the self-calibrated Palmer Drought Severity Index. Models that robustly describe the observations for the period 1961–2000 in given regions are identified and an assessment of the overall performance of the ensemble is provided. The results show that in general, models capture the most severe drought events and that the ensemble mean model also performs well. Some regions that appear to be more problematic to simulate well are also identified. These are relatively small regions and have rather complex topographical features. The analysis suggests that assessment of future drought occurrence based on climate change experiments in general would appear to be robust. But due to the heterogeneous and often fine-scaled structure of drought occurrence, quantitative results should be used with great care, particularly in regions with complex terrain and limited information about past drought occurrence.





We are grateful to all the climate modellers, who provided the RCM data to the ENSEMBLES regional data distribution centre at DMI making it accessible from Ben Lloyd-Hughes (Walker Institute, University of Reading) generated the RSPI data, provided to this project under license from the Environment Agency, England and Wales. This study received financial support from the European Union within the FP6 project WATCH (contract 036946) and the Danish Agency for Science, Technology and Innovation and is a part of the Centre for regional Change in the Earth System (CRES).


  1. Allen RG, Pereira LS, Reas D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO—Food and Agriculture Organization of the United Nations, Rome, FAO irrigation and drainage paper 56 edn (
  2. Alley WM (1984) The palmer drought severity index: limitations and assumptions. J ClimAppl Meteorol 23(7):1100–1109CrossRefGoogle Scholar
  3. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the IPCC, IPCC secretariate, Geneva (
  4. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newslett 6:225–235. ( Scholar
  5. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2–3):179–194. doi: 10.3354/cr00,916 CrossRefGoogle Scholar
  6. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model version 5 (β). DMI, Lyngbyvej 100, DK-2100 Copenhagen Ø, Denmark, technical report 06-17 edn, ISSN 1339-1388, (
  7. Collins M, Booth BB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2011) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn 36(9–10):1737–1766. doi: 10.1007/s00382-010-0808-0 CrossRefGoogle Scholar
  8. Coppola E, Giorgi F, Rauscher SA, Piani C (2010) Model weighting based on mesoscale structures in precipitation and temperature in an ensemble of regional climate models. Clim Res 44(CR Special 23):121–134. doi: 10.3354/cr00940 CrossRefGoogle Scholar
  9. Côté J, Gravel A, Patoine A, Roch M, Staniforth A (1998) The operational CMC/MRB global environmental multiscale (GEM) model: part I—design considerations and formulation. Mon Weather Rev 126(6):1373–1395CrossRefGoogle Scholar
  10. Dai A (2011) Drought under global warming: a review. Wiley Interdisciplinary Rev Clim Change 2(1):45–65. doi: 10.1002/wcc.81 CrossRefGoogle Scholar
  11. Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386:186–197. doi: 10.1016/j.jhydrol.2010.03.020 CrossRefGoogle Scholar
  12. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153CrossRefGoogle Scholar
  13. Farda A, Déqué M, Somot S, Horányi A, Spiridonov V, Tóth H (2010) Model ALADIN as regional climate model for Central and Eastern Europe. Studia Geophysica et geodaetica 54(2):313–332CrossRefGoogle Scholar
  14. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale P (2003) Daily precipitation statistics in reginal climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124. doi: 10.1029/2002JD002,287 CrossRefGoogle Scholar
  15. Frei C, Schär C (1998) A precipitation climatology on the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900CrossRefGoogle Scholar
  16. Giorgi F, Mearns LO (2010) Introduction to special section: regional climate modelling revisited. J Geophys Res (Atmospheres) 104(D6):6335–6352CrossRefGoogle Scholar
  17. Guttman NB (1991) A sensitivitiy analysis of the Palmer hydrologic drought index. Water Resour Bull 27(5):797–807CrossRefGoogle Scholar
  18. Hannaford J, Lloyd-Hughes B, Keef C, Parry S, Prudhomme C (2010) Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol Process 25(7):1146–1162. doi: 10.1002/hyp.7725 CrossRefGoogle Scholar
  19. Haugen JE, Haakenstad H (2006) Validation of HIRHAM version 2 with 50 and 25 km resolution. RegClim general technical report no 9 edn, pp 159–173Google Scholar
  20. Hobbins MT, Dai A, Roderick ML, Farquhar GD (2008) Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys Res Lett 35:L12403. doi: 10.1029/2008GL033840 CrossRefGoogle Scholar
  21. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77(1-4):61–73CrossRefGoogle Scholar
  22. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi: 10.1007/s10584-006-9213-4 CrossRefGoogle Scholar
  23. Karl TR (1986) The sensitivity of the palmer drought severity index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 25(1):77–86CrossRefGoogle Scholar
  24. Kjellström E, Giorgi F (2010) Introduction to special issue. Clim Res 44(CR special 23):117–119. doi: 10.3354/cr00976 CrossRefGoogle Scholar
  25. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology 108, SMHI, SE-60176, Norrköping, Sweden, 54 ppGoogle Scholar
  26. Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sanchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicator for regional climate models. Clim Res 44 (CR special 23):135–150. doi: 10.3354/cr00,932 CrossRefGoogle Scholar
  27. Lenderink G, van der Hurk B, van Meijgaard E, van Ulden A, Cujipers H (2003) Simulation of present day climate in RACMO2: first results and model developments. Technical Report 252:24, KNMI (
  28. McKee TB, Doeskin NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, eighth conference of applied climatology, Anaheim, CA, American Meteorological Society, pp 179–184Google Scholar
  29. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc1181 CrossRefGoogle Scholar
  30. Mudelsee A (2010) Climate time series analysis. Springer, BerlinGoogle Scholar
  31. Palmer W (1965) Meteorological drought. Research Paper 45, Weather Bureau, US Department of CommerceGoogle Scholar
  32. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, contribution of working group II to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  33. Parry S, Hannaford J, Lloyd-Hughes B, Williamson J (2011) Objective drought and high flow catalogues for Europe. WATCH technical report 33, WATCH, 57 p. (
  34. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A 193(1032):120–145. doi: 10.1098/rspa.1948.0037 CrossRefGoogle Scholar
  35. Plummer DA, Caya D, Frigon A, Coté H, Giguère M, Paquin D, Biner S, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19(13):3112–3132CrossRefGoogle Scholar
  36. Prudhomme C, Parry S, Hannaford J, Clark DB, Hagemann S, Voss F (2011) How well do large-scale models reproduce regional hydrological extremes in Europe? J Hydrometeorol 12(6):1181–1204. doi: 10.1175/2011JHM1387.1 CrossRefGoogle Scholar
  37. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60(5):898–910. doi: 10.1111/j.1600-0870.2008.00,341.x CrossRefGoogle Scholar
  38. Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global Planet Change 44:163–180. doi: 10.1016/j.gloplacha.2004.06.010 CrossRefGoogle Scholar
  39. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  40. Uppala S, Kållberg P, Simmons A, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B, Isaksen L, Janssen P, Jenne R, Mcnally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  41. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts. summary of research and results from the ENSEMBLES project. Tech. rep., Met Office Hadley Centre (
  42. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19(12):2818–2834CrossRefGoogle Scholar
  43. van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res 116:D03,106. doi: 10.1029/2010JD015,001 Google Scholar
  44. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17(12):2335–2351CrossRefGoogle Scholar
  45. Zadra A, Caya D, Côté J, Dugas B, Jones C, Laprise R, Winger K, Caron LP (2008) The next Canadian regional climate model. Phys Can 64(2):75–83Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Cathrine Fox Maule
    • 1
    Email author
  • Peter Thejll
    • 1
  • Jens H. Christensen
    • 1
  • Synne H. Svendsen
    • 1
  • Jamie Hannaford
    • 2
  1. 1.Danish Meteorological InstituteCopenhagen ØDenmark
  2. 2.Centre for Ecology and HydrologyWallingfordUK

Personalised recommendations