Climate Dynamics

, Volume 39, Issue 7–8, pp 1577–1598 | Cite as

A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years

  • Stefan BrönnimannEmail author
  • Andrea N. Grant
  • Gilbert P. Compo
  • Tracy Ewen
  • Thomas Griesser
  • Andreas M. Fischer
  • Martin Schraner
  • Alexander Stickler


We compare the daily, interannual, and decadal variability and trends in the thermal structure of the Arctic troposphere using eight observation-based, vertically resolved data sets, four of which have data prior to 1948. Comparisons on the daily scale between historical reanalysis data and historical upper-air observations were performed for Svalbard for the cold winters 1911/1912 and 1988/1989, the warm winters 1944/1945 and 2005/2006, and the International Geophysical Year 1957/1958. Excellent agreement is found at mid-tropospheric levels. Near the ground and at the tropopause level, however, systematic differences are identified. On the interannual time scale, the correlations between all data sets are high, but there are systematic biases in terms of absolute values as well as discrepancies in the magnitude of the variability. The causes of these differences are discussed. While none of the data sets individually may be suitable for trend analysis, consistent features can be identified from analyzing all data sets together. To illustrate this, we examine trends and 20-year averages for those regions and seasons that exhibit large sea-ice changes and have enough data for comparison. In the summertime Pacific Arctic and the autumn eastern Canadian Arctic, the lower tropospheric temperature anomalies for the recent two decades are higher than in any previous 20-year period. In contrast, mid-tropospheric temperatures of the European Arctic in the wintertime of the 1920s and 1930s may have reached values as high as those of the late 20th and early 21st centuries.


Interannual Variability Cold Bias Warm Bias Middle Troposphere Radiosonde Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Swiss National Science Foundation (projects “Past climate variability from an upper-level perspective” and EVALUATE) and by the EU FP7 project ERA-CLIM. The Twentieth Century Reanalysis Project (20CR) used resources of the National Energy Research Scientific Computing Center and of the National Center for Computational Sciences at Oak Ridge National Laboratory, which are supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 and Contract No. DE-AC05-00OR22725, respectively. Support for the 20CR dataset is provided by the US Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. Constructive comments by two anonymous reviewers and also by P.D. Sardeshmukh of the University of Colorado CIRES/CDC and NOAA/ESRL/PSD on an earlier version of this manuscript are greatly appreciated.

Supplementary material

382_2012_1291_MOESM1_ESM.doc (648 kb)
Supplementary material 1 (DOC 648 kb)


  1. Bengtsson L, Semenov V, Johannessen O (2004) The early twentieth-century warming in the Arctic—a possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  2. Bitz CM, Fu Q (2008) Arctic warming aloft is data set dependent. Nature 455:E3–E4CrossRefGoogle Scholar
  3. Brohan P, Kennedy J, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  4. Bromwich D, Wang S (2005) Evaluation of the NCEP-NCAR and ECMWF 15-and 40-years reanalyses using rawindsonde data from two independent Arctic field experiments. Mon Weather Rev 133:3562–3578CrossRefGoogle Scholar
  5. Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112:D10111. doi: 10.1029/2006JD007859 CrossRefGoogle Scholar
  6. Brönnimann S (2003) A historical upper-air data set for the 1939–1944 period. Int J Climatol 23:769–791CrossRefGoogle Scholar
  7. Brönnimann S (2007) Impact of El Niño–Southern Oscillation on European climate. Rev Geophys 45:RG3003. doi: 10.1029/2006RG000199 CrossRefGoogle Scholar
  8. Brönnimann S (2009) Early twentieth-century warming. Nat Geosc 2:735–736CrossRefGoogle Scholar
  9. Brönnimann S, Luterbacher J, Staehelin J, Svendby TM, Hansen G, Svenøe T (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Nino. Nature 431:971–974CrossRefGoogle Scholar
  10. Brönnimann S, Griesser T, Stickler A (2010) A gridded monthly upper-air data set back to 1918. Clim Dyn (online first). doi: 10.1007/s00382-010-0940-x
  11. Brönnimann S, Compo GP, Allan R, Adam W, Spadin R (2011) Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis. Clim Past 7:265–276. doi: 10.5194/cp-7-265-2011 CrossRefGoogle Scholar
  12. Compo GP et al (2011) The Twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  13. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. doi: 10.1029/2007GL029948 CrossRefGoogle Scholar
  14. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  15. Dege W (1960) Wissenschafliche Beobachtungen auf dem Nordostland von Spitzbergen. Berichte des Deutschen Wetterdienstes Nr. 72 (Bd. 10), Offenbach a MGoogle Scholar
  16. Durre I, Vose RS, Wuertz DB (2006) Overview of the integrated global radiosonde archive. J Clim 19:53–68CrossRefGoogle Scholar
  17. Grant A, Brönnimann S, Haimberger L (2008) Recent Arctic warming vertical structure contested. Nature 455:E2–E3. doi: 10.1038/nature07257 CrossRefGoogle Scholar
  18. Grant A, Brönnimann S, Ewen T, Nagurny A (2009a) A new look at radiosonde data prior to 1958. J Clim 22:3232–3247CrossRefGoogle Scholar
  19. Grant AN, Brönnimann S, Ewen T, Griesser T, Stickler A (2009b) The early twentieth century warm period in the European Arctic. Met Z 18:425–432CrossRefGoogle Scholar
  20. Graversen R, Mauritsen T, Tjernström M, Källèn E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–56CrossRefGoogle Scholar
  21. Griesser T, Brönnimann S, Grant A, Ewen T, Stickler A, Comeaux J (2010) Reconstruction of global monthly upper-level temperature and geopotential height fields back to 1880. J Clim 23:5590–5609CrossRefGoogle Scholar
  22. Haimberger L (2007) Homogenization of radiosonde temperature time series using innovation statistics. J Clim 20:1377–1403CrossRefGoogle Scholar
  23. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022CrossRefGoogle Scholar
  24. Isaksson E, Kohler J, Pohjola V, Moore J, Igarashi M, Karlof L, Martma T, Meijer H, Motoyama H, Vaikmae R, van de Wal RSW (2005) Two ice-core delta O-18 records from Svalbard illustrating climate and sea-ice variability over the last 400 years. Holocene 15:501–509CrossRefGoogle Scholar
  25. Johannessen OR et al (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56A:328–341Google Scholar
  26. Kauker F, Köberle C, Gerdes R, Karcher M (2008) Modeling the 20th century Arctic Ocean/Sea Ice system: reconstruction of surface forcing. J Geophys Res 113:C09027CrossRefGoogle Scholar
  27. Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. B Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  28. Lüpkes C, Vihma T, Jakobson E, König-Langlo G, Tetzlaff A (2010) Meteorological observations from ship cruises during summer to the central Arctic: a comparison with reanalysis data. Geophys Res Lett 37:L09810. doi: 10.1029/2010GL042724 CrossRefGoogle Scholar
  29. Onogi K et al (2007) The JRA-25 reanalysis. J Met Soc Jpn 85:369–432CrossRefGoogle Scholar
  30. Overland J, Spillane M, Percival D, Wang M, Mofjeld H (2004) Seasonal and regional variation of Pan-Arctic surface air temperature over the instrumental record. J Clim 17:3263–3282CrossRefGoogle Scholar
  31. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111CrossRefGoogle Scholar
  32. Polyakov I, Bekryaev R, Alekseev G, Bhatt U, Colony R, Johnson M, Maskshtas A, Walsh D (2003) Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J Clim 16:2067–2077CrossRefGoogle Scholar
  33. Przybylak R (2007) Recent air-temperature changes in the Arctic. Ann Glaciol 46:316–324CrossRefGoogle Scholar
  34. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  35. Rempp G, Wagner A (1916) Die Temperaturverhältnisse über Spitzbergen in der Adventbai 1911/12. Veröffentlichungen des Deutschen Observatoriums Ebeltofthafen-Spitzbergen 1, p 27Google Scholar
  36. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337CrossRefGoogle Scholar
  37. Screen JA, Simmonds I (2011) Erroneous Arctic temperature trends in the ERA-40 reanalysis: a closer look. J Clim 24:2620–2627CrossRefGoogle Scholar
  38. Selinger F (2001) Von „Nanok“bis „Eismitte“—Meteorologische Unternehmungen in der Arktis 1940–1945. Schriften des Deutschen SchiffahrtsmuseumsGoogle Scholar
  39. Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19CrossRefGoogle Scholar
  40. Stickler A et al (2010) The comprehensive historical upper air network (CHUAN). B Am Meteorol Soc 91:741–751. doi: 10.1175/2009BAMS2852.1 CrossRefGoogle Scholar
  41. Thorne P (2008) Arctic tropospheric warming amplification? Nature 455:E1–E2. doi: 10.1038/nature07256 CrossRefGoogle Scholar
  42. Thorne PW, Lanzante JR, Peterson TC, Seidel DJ, Shine KP (2010) Tropospheric temperature trends: history of an ongoing controversy. Adv Rev 2:66–68Google Scholar
  43. Tuomenvirta H, Drebs A, Førland E, Tveito OE, Alexandersson H, Vaarby Laursen E, Jónsson T (2001) Nordklim data set 1.0—description and illustrations. Norwegian Meteorological Institute Report 08/01 Klima, OsloGoogle Scholar
  44. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  45. Wang M, Overland J, Kattsov V, Walsh J, Zhang X, Pavlova T (2007) Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the twentieth century. J Clim 20:1093–1107CrossRefGoogle Scholar
  46. Wegener K (1916) Die Technik der Drachen- und Ballonaufstiege im Winter 1912/13 zu Ebeltofthafen (Spitzbergen). Veröffentlichungen des Deutschen Observatoriums Ebeltofthafen-Spitzbergen, Heft 2, 3–9Google Scholar
  47. Wegener K, Robitzsch M (1916a) Ergebnisse der Pilot-Visierungen während der Überwinterung 1912/13. Veröffentlichungen des Deutschen Observatoriums Ebeltofthafen-Spitzbergen 3, p 18Google Scholar
  48. Wegener K, Robitzsch M (1916b) Ergebnisse der Fessel-Aufstiege während der Überwinterung 1912/13. Veröffentlichungen des Deutschen Observatoriums Ebeltofthafen-Spitzbergen 4, p 21Google Scholar
  49. Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Clim 30:1269–1279. doi: 10.1002/joc.1973 Google Scholar
  50. Wood KR, Overland JE, Jónsson T, Smoliak BV (2010) Air temperature variations on the Atlantic–Arctic boundary since 1802. Geophys Res Lett 37:L17708. doi: 10.1029/2010GL044176 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stefan Brönnimann
    • 1
    • 2
    Email author
  • Andrea N. Grant
    • 2
  • Gilbert P. Compo
    • 3
    • 4
  • Tracy Ewen
    • 5
  • Thomas Griesser
    • 2
  • Andreas M. Fischer
    • 6
  • Martin Schraner
    • 2
    • 7
  • Alexander Stickler
    • 1
    • 2
  1. 1.Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  3. 3.Climate Diagnostics Center, CIRESUniversity of ColoradoBoulderUSA
  4. 4.Physical Sciences Division, Earth System Research LaboratoryNOAABoulderUSA
  5. 5.Department of GeographyUniversity of ZurichZurichSwitzerland
  6. 6.Federal Office of Meteorology and Climatology MeteoSwissZurichSwitzerland
  7. 7.Swiss National Supercomputing Centre CSCSMannoSwitzerland

Personalised recommendations