Climate Dynamics

, Volume 39, Issue 12, pp 2833–2846 | Cite as

Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies

  • Jason C. Furtado
  • Emanuele Di Lorenzo
  • Bruce T. Anderson
  • Niklas Schneider


The North Pacific Oscillation (NPO) recently (re-)emerged in the literature as a key atmospheric mode in Northern Hemisphere climate variability, especially in the Pacific sector. Defined as a dipole of sea level pressure (SLP) between, roughly, Alaska and Hawaii, the NPO is connected with downstream weather conditions over North America, serves as the atmospheric forcing pattern of the North Pacific Gyre Oscillation (NPGO), and is a potential mechanism linking extratropical atmospheric variability to El Niño events in the tropical Pacific. This paper explores further the forcing dynamics of the NPO and, in particular, that of its individual poles. Using observational data and experiments with a simple atmospheric general circulation model (AGCM), we illustrate that the southern pole of the NPO (i.e., the one near Hawaii) contains significant power at low frequencies (7–10 years), while the northern pole (i.e., the one near Alaska) has no dominant frequencies. When examining the low-frequency content of the NPO and its poles separately, we discover that low-frequency variations (periods >7 years) of the NPO (particularly its subtropical node) are intimately tied to variability in central equatorial Pacific sea surface temperatures (SSTs) associated with the El Niño-Modoki/Central Pacific Warming (CPW) phenomenon. This result suggests that fluctuations in subtropical North Pacific SLP are important to monitor for Pacific low-frequency climate change. Using the simple AGCM, we also illustrate that variability in central tropical Pacific SSTs drives a significant fraction of variability of the southern node of the NPO. Taken together, the results highlight important links between secondary modes (i.e., CPW-NPO-NPGO) in Pacific decadal variability, akin to already established relationships between the primary modes of Pacific climate variability (i.e., canonical El Niño, the Aleutian Low, and the Pacific Decadal Oscillation).


Pacific decadal variability El Niño Modes of climate variability North Pacific climate North Pacific Oscillation 


  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Climate 15:2205–2231CrossRefGoogle Scholar
  2. Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res 108:4732. doi:10.1029/2003JD003805 CrossRefGoogle Scholar
  3. Anderson BT (2004) Investigation of a large-scale mode of ocean-atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies. J Climate 17:4089–4098CrossRefGoogle Scholar
  4. Anderson BT (2007) Intraseasonal atmospheric variability in the extratropics and its relation to the onset of tropical Pacific sea surface temperature anomalies. J Climate 20:926–936CrossRefGoogle Scholar
  5. Anderson BT (2007) On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J Climate 20:1593–1599CrossRefGoogle Scholar
  6. Anderson BT, Maloney E (2006) Interannual tropical Pacific sea surface temperatures and their relation to preceding sea level pressures in the NCAR CCSM2. J Climate 19:998–1012CrossRefGoogle Scholar
  7. Ashok K, Behara SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  8. Barsugli JJ, Battisti DS (1998) The basic effects of atmosphere-ocean thermal coupling on midlatitude variability. J Atmos Sci 55:477–493CrossRefGoogle Scholar
  9. Bladé I (1997) The influence of midlatitude coupling on the low frequency variability of a GCM. Part I: no tropical SST forcing. J Climate 10:2087–2106CrossRefGoogle Scholar
  10. Bracco A, Kucharski F, Molteni F, Hazeleger W, Severijns C (2006) A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO. Climate Dyn 28:441–460CrossRefGoogle Scholar
  11. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Climate 12:1990–2009CrossRefGoogle Scholar
  12. Caballero R, Anderson BT (2009) Impact of midlatitude stationary waves on regional Hadley cells and ENSO. Geophys Res Lett L17704. doi:10.1029/2009GL039668
  13. Di Lorenzo E, Schneider N, Cobb KM, Chhak K, Franks PJS, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchister E, Powell TM, Rivere P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:10.1029/2007GL032838 CrossRefGoogle Scholar
  14. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific. Nat Geosci 3:762–765CrossRefGoogle Scholar
  15. Goddard L, Graham NE (1997) El Niño in the 1990s. J Geophys Res 102:10,423–10,436CrossRefGoogle Scholar
  16. Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteor Soc 82:247–267CrossRefGoogle Scholar
  17. Kucharski F, Molteni F, Yoo JH (2006) SST forcing of decadal Indian monsoon rainfall variability. Geophys Res Lett 33:L03709. doi:10.1029/2005GL025371 CrossRefGoogle Scholar
  18. Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: the “weakening” of the 1980s and 1990s. J Climate 20:4255–4266CrossRefGoogle Scholar
  19. Linkin ME, Nigam S (2008) The North Pacific Oscillation-West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Climate 21:1979–1997CrossRefGoogle Scholar
  20. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  21. Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parameterization. I: model climatology and variability in multi-decadal experiment. Climate Dyn 20:175–191Google Scholar
  22. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16:3853–3857CrossRefGoogle Scholar
  23. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Climate 8:1999–2024CrossRefGoogle Scholar
  24. Quayle RG (1989) The Wolbach Dataset for global climate monitoring—Philanthropy and climatology. Bull Amer Meteor Soc 70:1570Google Scholar
  25. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  26. Rogers JC (1981) The North Pacific Oscillation. J Climatol 1:39–57CrossRefGoogle Scholar
  27. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J Climate 21:2283–2296CrossRefGoogle Scholar
  28. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78CrossRefGoogle Scholar
  29. van Loon H, Meehl GA, Millhiff RF (2003) The Southern Oscillation in the early 1990s. Geophys Res Lett 30:1478. doi:10.1029/2002GL016307 CrossRefGoogle Scholar
  30. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  31. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Climate 16:2668–2675CrossRefGoogle Scholar
  32. Walker GT, Bliss EW (1932) World weather V. Mem Roy Meteor Soc 4:53–84Google Scholar
  33. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jason C. Furtado
    • 1
    • 2
  • Emanuele Di Lorenzo
    • 1
  • Bruce T. Anderson
    • 3
  • Niklas Schneider
    • 4
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Atmospheric and Environmental Research, Inc.LexingtonUSA
  3. 3.Department of Geography and EnvironmentBoston UniversityBostonUSA
  4. 4.International Pacific Research CenterUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations