Climate Dynamics

, Volume 39, Issue 11, pp 2611–2629 | Cite as

EC-Earth V2.2: description and validation of a new seamless earth system prediction model

  • W. Hazeleger
  • X. Wang
  • C. Severijns
  • S. Ştefănescu
  • R. Bintanja
  • A. Sterl
  • K. Wyser
  • T. Semmler
  • S. Yang
  • B. van den Hurk
  • T. van Noije
  • E. van der Linden
  • K. van der Wiel
Article

Abstract

EC-Earth, a new Earth system model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. The performance of version 2.2 (V2.2) of the model is compared to observations, reanalysis data and other coupled atmosphere–ocean-sea ice models. The large-scale physical characteristics of the atmosphere, ocean and sea ice are well simulated. When compared to other coupled models with similar complexity, the model performs well in simulating tropospheric fields and dynamic variables, and performs less in simulating surface temperature and fluxes. The surface temperatures are too cold, with the exception of the Southern Ocean region and parts of the Northern Hemisphere extratropics. The main patterns of interannual climate variability are well represented. Experiments with enhanced CO2 concentrations show well-known responses of Arctic amplification, land-sea contrasts, tropospheric warming and stratospheric cooling. The global climate sensitivity of the current version of EC-Earth is slightly less than 1 K/(W m−2). An intensification of the hydrological cycle is found and strong regional changes in precipitation, affecting monsoon characteristics. The results show that a coupled model based on an operational seasonal prediction system can be used for climate studies, supporting emerging seamless prediction strategies.

References

  1. Balsamo G, Viterbo P, Beljaars A, van den Hurk B, Hirschi M, Betts AK, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeor 10:623–643CrossRefGoogle Scholar
  2. Bechtold P, Köhler M, Jung T, Leutbecher M, Rodwell M, Vitart F, Balsamo G (2008) Advances in predicting atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Quart J Roy Meteor Soc 134:1337–1351CrossRefGoogle Scholar
  3. Belchansky GI, Douglas DC, Platonov NG (2008) Fluctuating Arctic sea ice thickness changes estimated by an in situ learned and empirically forced neural network model. J Clim 21:716–729CrossRefGoogle Scholar
  4. Bintanja R, Graversen RG, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nature Geoscience doi: 10.1038/NGEO1285
  5. Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Spring 17 ppGoogle Scholar
  6. Cunningham S, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth H, Grant E, Hirschi J, Beal L, Meinen CS, Bryden H (2007) Temporal variability of the Atlantic meridional overturning circulation at 25°N. Science 317:935–938CrossRefGoogle Scholar
  7. Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Met Soc 137:535–597CrossRefGoogle Scholar
  8. Delecluse P, Madec G (2000) Ocean modelling and the role of the ocean in the climate system. In: Holland WR, Joussaume S, David F (eds) Modeling the earth’s climate and its variability, Les Houches, Session, LXVII 1997. Elsevier Science, London, pp 237–313Google Scholar
  9. Dutra E, Balsamo G, Viterbo P, Miranda PMA, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol doi: 10.1175/2010JHM1249.1
  10. Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res 113:D01103. doi:10.1029/2007JD008470 CrossRefGoogle Scholar
  11. Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J Climate 21:2313–2325CrossRefGoogle Scholar
  12. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646CrossRefGoogle Scholar
  13. Gaspar P, Gregoris Y, Lefevre JM (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing. Tests at station Papa and long-term upper ocean study site. J Geophys Res 95:16179–16193CrossRefGoogle Scholar
  14. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  15. Gregory J et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747 CrossRefGoogle Scholar
  16. Haarsma RJ, Selten FM, van den Hurk BJJM, Hazeleger W, Wang X (2009) Drier mediterranean soils due to greenhouse warming bring easterly winds over summertime Central Europe. Geophys Res Lett 36:L04705. doi:10.1029/2008GL036617 CrossRefGoogle Scholar
  17. Hazeleger W, Haarsma RJ (2005) Sensitivity of tropical Atlantic climate to mixing in a coupled ocean-atmosphere model. Clim Dyn 25:387–399CrossRefGoogle Scholar
  18. Hazeleger W et al (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Amer Meteor Soc 91:1357–1363. doi:10.1175/2010BAMS2877.1 CrossRefGoogle Scholar
  19. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  20. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  21. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  22. Huijnen V et al (2010) The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0. Geosci Model Dev 3:445–473CrossRefGoogle Scholar
  23. Hurrell J, et al. (2003) The North Atlantic oscillation: climate significance and environmental impact, geophysical monograph 134, American Geophysical UnionGoogle Scholar
  24. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual Model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  25. Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465CrossRefGoogle Scholar
  26. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589CrossRefGoogle Scholar
  27. Kiehl JT, Trenberth KE (1997) Earths annual global mean energy budget. Bull Amer Meteor Soc 78:197–208CrossRefGoogle Scholar
  28. Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743. doi:10.1038/ngeo337 CrossRefGoogle Scholar
  29. Lamarque JF, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Clim change 109:191–212. doi:10.1007/s10584-011-0155-0 Google Scholar
  30. Laurian A, Drijfhout SS, Hazeleger W, van Dorland R (2009) Global surface cooling: the atmospheric fast feedback response to a collapse of the thermohaline circulation Geophys Res Lett 36: L20708 doi: 10.1029/2009GL040938
  31. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  32. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240CrossRefGoogle Scholar
  33. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394CrossRefGoogle Scholar
  34. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  35. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak S (1998) ENSO theory. J Geophys Res 103:14261–14290CrossRefGoogle Scholar
  36. Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy JF, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Amer Meteor Soc 85:853–872CrossRefGoogle Scholar
  37. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Amer Meteor Soc 89:459–470CrossRefGoogle Scholar
  38. Penner JE, Andreae M, Annegarn M et al (2001) Aerosols, their direct and indirect effects. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 289–416Google Scholar
  39. Penner JE, Quaas J, Storelvmo T, Takemura T, Boucher O, Guo H, Kirkevåg A, Kristjánsson JE, Seland Ø (2006) Model intercomparison of indirect aerosol effects. Atmos Chem Phys 6:3391–3405CrossRefGoogle Scholar
  40. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  41. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Amer Meteor Soc 89:303–311CrossRefGoogle Scholar
  42. Salas y Mélia D, Chauvin F, Déqué M, Douville H, Guérémy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of CNRM-CM3 global coupled climate model. Note de centre GMGEC (internal publication), CNRM, 103Google Scholar
  43. Semtner AJ Jr (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389CrossRefGoogle Scholar
  44. Shutts G, Allen T, Berner J (2008) Stochastic parametrization of multiscale processes using a dual-grid approach. Phil Trans R Soc A 366:2625–2641CrossRefGoogle Scholar
  45. Storelvmo T, Lohmann U, Bennartz R (2009) What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys Res Lett, doi: 10.1029/2008GL036069
  46. Taylor KE, Stouffer RJ, Meehl GA (2011) A summary of the CMIP5 experiment design. http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_22Jan11_marked.pdf
  47. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  48. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443CrossRefGoogle Scholar
  49. Trenberth KE, Fasullo JT, Kiehl JT (2009) Earth’s global energy budget. Bull Amer Meteor Soc 90:311–323CrossRefGoogle Scholar
  50. Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  51. Valcke S (2006) OASIS3 user guide. PRISM Tech. Rep 3, 64 pp. Available online at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf
  52. van den Hurk BJJM, Viterbo P (2003) The Torne-Kalix PILPS2E experiment as testbed for modifications to the ECMWF land surface scheme. Global Planet Change 38:165–173CrossRefGoogle Scholar
  53. van den Hurk BJJM, Viterbo P, Beljaars ACM, Betts AK (2000) Offline validation of the ERA40 surface scheme. ECMWF Tech Memo 295, 42 pp ECMWF, ReadingGoogle Scholar
  54. van der Molen MK, van den Hurk BJJM, Hazeleger W (2011) A dampened land use change climate response towards the tropics. Clim Dyn doi: 10.1007/s00382-011-1018-0
  55. van Genuchten MTh (1980) A closed-from equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  56. van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atm Chem Phys 2006: 86–881, sref:1680-7324/acp/2006-6-863Google Scholar
  57. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  58. Winton M (2006) Surface albedo feedback estimates for the AR4 climate models. J Clim 19:359–365CrossRefGoogle Scholar
  59. Xie P, Arkin PA (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858CrossRefGoogle Scholar
  60. Zalesak ST (1979) Fully multidimensional flux corrected transport algorithms for fluids. J Comput Phys 31:335–362CrossRefGoogle Scholar
  61. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • W. Hazeleger
    • 1
    • 2
  • X. Wang
    • 1
  • C. Severijns
    • 1
  • S. Ştefănescu
    • 3
  • R. Bintanja
    • 1
  • A. Sterl
    • 1
  • K. Wyser
    • 4
  • T. Semmler
    • 5
  • S. Yang
    • 6
  • B. van den Hurk
    • 1
  • T. van Noije
    • 1
  • E. van der Linden
    • 1
  • K. van der Wiel
    • 2
  1. 1.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  2. 2.Wageningen University (WU)WageningenThe Netherlands
  3. 3.European Centre for Medium-Range Weather Forecasts (ECMWF)ReadingUK
  4. 4.Swedish Meteorological and Hydrological Institute (SMHI)NorrköpingSweden
  5. 5.Irish Meteorological Institute (MetEireann)DublinIreland
  6. 6.Danish Meteorological Institute (DMI)CopenhagenDenmark

Personalised recommendations