Skip to main content
Log in

Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Associated with the double Inter-tropical convergence zone problem, a dipole SST bias pattern (cold in the equatorial central Pacific and warm in the southeast tropical Pacific) remains a common problem inherent in many contemporary coupled models. Based on a newly-developed coupled model, we performed a control run and two sensitivity runs, one is a coupled run with annual mean SST correction and the other is an ocean forced run. By comparison of these three runs, we demonstrated that a serious consequence of this SST bias is to severely suppress the thermocline feedback in a realistic simulation of the El Niño/Southern Oscillation. Firstly, the excessive cold tongue extension pushes the anomalous convection far westward from the equatorial central Pacific, prominently diminishing the convection-low level wind feedback and thus the air-sea coupling strength. Secondly, the equatorial surface wind anomaly exhibits a relatively uniform meridional structure with weak gradient, contributing to a weakened wind-thermocline feedback. Thirdly, the equatorial cold SST bias induces a weakened upper-ocean stratification and thus yields the underestimation of the thermocline-subsurface temperature feedback. Finally, the dipole SST bias underestimates the mean upwelling through (a) undermining equatorial mean easterly wind stress, and (b) enhancing convective mixing and thus reducing the upper ocean stratification, which weakens vertical shear of meridional currents and near-surface Ekman-divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • AchutaRao K, Sperber K (2002) Simulation of the El Niño Southern Oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Article  Google Scholar 

  • AchutaRao K, Sperber K (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–16

    Article  Google Scholar 

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • An S-I (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Clim 21:3680–3686

    Google Scholar 

  • An S-I, Jin F–F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • An S-I, Ham Y-G, Kug J-S, Timmermann A, Choi J, Kang I-S (2010) The inverse effect of annual-mean state and annual-cycle changes on ENSO. J Clim 23:1095–1110

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the SODA ocean reanalysis. J Geophys Res 110. doi:10.1029/2004JC002817

  • Cronin MF, Kessler WS (2009) Near-Surface shear flow in the tropical Pacific cold tongue front. J Phys Oceanogr 39:1200–1215

    Article  Google Scholar 

  • Danabasoglu G, Large WG, Tribbia JJ, Gent PR, Briegleb BP (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19:2347–2365

    Article  Google Scholar 

  • Dukowicz JK, Smith RD (1994) Implicit free-surface method for the bryan-cox-semtner ocean model. J Geophys Res 99:7991–8014

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Guilyardi E (2006) El Niño-mean state-seasonal cycle intearactions in a multi-model ensemble. Clim Dyn 26:329–348

    Article  Google Scholar 

  • Guilyardi E, Braconnot P, Jin F–F, Kim ST, Kolasinski M, Li T, Musat I (2009a) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Oldenborgh GJV, Stockdale T (2009b) Understanding El Niño in ocean-atmosphere general circulation models. Bull Am Meteor Soc 90:325–340

    Article  Google Scholar 

  • Guldberg A, Kaas E, Deque M, Yang S, Vester TS (2005) Reduction of systematic errors by empirical model correction impact on seasonal prediction skill. Tellus 57A:575–588

    Google Scholar 

  • Jiang X, Li T (2005) Re-initiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J Clim 18:3777–3795

    Article  Google Scholar 

  • Jin F–F, Kim ST, Bejarano L (2006) A coupled stability index for ENSO. Geophys Res Lett 33:L23708. doi:101029/2006GL027221

  • Jin F–F, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys Res Lett 34:L03807. doi:10.1029/2006GL027372

    Article  Google Scholar 

  • Johnson GC, McPhaden MJ, Firing E (2001) Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J Phys Oceanogr 31:839–849

    Article  Google Scholar 

  • Joseph R, Nigam S (2006) ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations Realistic representation? J Clim 19:4360–4377

    Article  Google Scholar 

  • Kim ST, Jin F–F (2010) An ENSO stability analysis Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn. doi:101007/s00382-010-0872-5

  • Kim D, Kug J-S, Kang I-S, Jin F–F, Wittenberg AT (2008) Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn 31:213–226

    Article  Google Scholar 

  • Lagerloef GSE, Mitchum GT, Lukas RB, Niller PP (1999) Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J Geophys Res 104(C10):23313–23326

    Article  Google Scholar 

  • Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model annual-mean climatology. J Phys Oceanogr 27:2418–2447

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. PNAS 106:20578–20583

    Article  Google Scholar 

  • Latif M et al (2001) ENSIP: the El Niño simulation intercomparision project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Li T, Hogan TF (1999) The role of annual-mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J Clim 12:780–792

    Article  Google Scholar 

  • Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs Ocean-Atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Lioyd J, Guilyardi E, Weller H (2010) The role of atmosphere feedbacks during ENSO in the CMIP3 models part II using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn. doi:101007/s00382-010-0895-y:

  • Liu L, Yu W, Li T (2011) Dynamic and thermodynamic air-sea coupling associated with the Indain Ocean dipole diagnosed from 23 WCRP CMIP3 models. J Clim. doi:10.1175/2011JCLI4041.1

  • Luo J–J, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • Ma C–C, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and tropical Pacific circulation a coupled ocean-atmosphere GCM study. J Clim 9:1635–1645

    Article  Google Scholar 

  • Manganello JV, Huang B (2009) The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Clim Dyn. doi:101007/s00382-008-0407-5

  • Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon Wea Rev 123:2825–2835

    Article  Google Scholar 

  • Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dyn 17:515–526

    Article  Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteor Soc 86:89–93

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ, Johnson GC (2001) Vertical velocities and transports in the Equatorial Pacific during 1993–99. J Phys Oceanogr 31:3230–3248

    Article  Google Scholar 

  • Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027

    Article  Google Scholar 

  • Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924

    Article  Google Scholar 

  • Nordeng TE (1995) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics ECMWF Research Dept Tech Memo, 206, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 41 pp

  • Ohlmann JC (2003) Ocean radiant heating in climate models. J Clim 16:1337–1351

    Article  Google Scholar 

  • Philip SY, Van Oldenborgh GJ (2006) Shifts in ENSO coupling processes under global warming. Geophys Res Lett 33:L11704. doi:10.1029/2006GL026196

    Article  Google Scholar 

  • Randall DA, et al. (2007) Climate models and their evaluation. In: Solomon S et al. (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 589–662

  • Roeckner E et al. (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institute for Meteorology Rep 218, 90 pp

  • Smith RD, Dukowicz JK, Malone RC (1992) Parallel ocean general circulation modeling. Physica D 60:38–61

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293

    Article  Google Scholar 

  • Song X, Zhang GJ (2009) Convection parameterization, Tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: climatology and atmospheric feedback. J Clim 22:4299–4315

    Article  Google Scholar 

  • Spencer H, Sutton R, Slingo JM (2007) El Niño in a coupled climate model sensitivity to changes in mean state induced by heat flux and wind stress corrections. J Clim 15:2273–2298

    Article  Google Scholar 

  • Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary condition for AMIP II simulations, PCMDI Rep 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA, 25 pp

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 Re-analysis. Quart J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Valcke S, Caubel A, Declat D, Terry L (2003) OASIS3 ocean atmosphere sea ice soil user’s guide tech rep TR/CMGC/03/69, CERFACS, Toulouse, France, 57 pp

  • Vitart F, Balmaseda MA, Ferranti L, Anderson D (2003) Westerly wind events and the 1997/98 El Niño event in the ECMWF seasonal forecasting system: a case study. J Clim 16:3153–3170

    Article  Google Scholar 

  • Wang B, An S-I (2001) Why the properties of El Niño changed during the late 1970s. Geophys Res Lett 28:3709–3712

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models part III tropical pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Xiang B, Yu W, Li T, Wang B (2011) The critical role of the boreal summer mean state in the development of the IOD. Geophys Res Lett 38:L02710. doi:10.1029/2010GL045851

    Article  Google Scholar 

  • Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19:2545–2566

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global oce-free oceans (1981–2005). Bull Am Meteor Soc 88:527–539

    Article  Google Scholar 

  • Zavala-Garay J, Moore AM, Perez CL, Kleeman R (2003) The response of a coupled model of ENSO to observed estimates of stochastic forcing. J Clim 16:2827–2842

    Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:101029/2003JD004457

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. Tim Li, Niklas Schneider, Kevin P Hamilton for fruitful discussions and two anonymous reviewers for their useful comments. This work has been supported by the Climate Dynamics Program of the National Science Foundation under award No AGS-1005599, and APEC Climate Center. BW acknowledges partial support from International Pacific Research Center which is sponsored by the JAMSTEC, NASA (NNX07AG53G) and NOAA (NA09OAR4320075). QD acknowledges support from the Quaternary Research Center at the University of Washington. This is SOEST contribution number 8425 and IPRC contribution number 810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqiang Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, B., Wang, B., Ding, Q. et al. Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Clim Dyn 39, 1413–1430 (2012). https://doi.org/10.1007/s00382-011-1164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1164-4

Keywords

Navigation