Skip to main content

Advertisement

Log in

Atmospheric circulation anomalies due to 115 kyr BP climate forcing dominated by changes in the North Pacific Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climate at the time of inception of the Laurentide Ice Sheet (LIS) at ~115 kyr BP is simulated with the fully coupled NCAR Community Climate System Model (CCSM3) and compared to a simulated preindustrial climate (circa 1870) in order to better understand land surface and atmospheric responses to orbital and greenhouse cooling at inception. The interaction between obliquity and eccentricity produces maximum decrease in TOA insolation in JJA over the Arctic but increases occur over the tropics in DJF. The land surface response is dominated by widespread summer cooling in the Northern Hemisphere (NH), increases in snowfall, and decreases in melt rates and total precipitation. CCSM3 responds to the climate forcing at 115 kyr BP by producing incipient glaciation in the areas of LIS nucleation. We find that the inception of the LIS could have occurred with atmospheric circulation patterns that differ little from the present. The location of the troughs/ridges, mean flow over the Canadian Arctic and dominant modes of the atmospheric circulation are all very similar to the present. Larger changes in mean sea level pressure occur upstream of the inception region in the North Pacific Ocean and downstream in Western Europe. In the North Pacific region, the 115 kyr BP anomalies weaken both the Pacific high and Aleutian low making NH summers look more like the PREIND winters and vice versa. The occurrence of cold JJA anomalies at 115 kyr BP favors outbreaks of cold air not in the winter as in contemporary climates but during the summer instead and reinforces the cooling from orbital and GHG reductions. Increased poleward eddy transport of heat and moisture characterizes the atmospheric response in addition to reduced total cloud cover in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Archer D, Ganoploski A (2005) A movable trigger: fossil fuel CO2 and the onset of the next glaciation. Geochem Geophys Geosyst 6:Q05003. doi:10.1029/2004GC000891

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414. doi:10.1038/329408a0

    Article  Google Scholar 

  • Berger A, Loutre MF (1992) Astronomical solutions for paleoclimate studies over the last 3 million years. Earth Planet Sci Lett 111:369–382

    Article  Google Scholar 

  • Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297:1287–1288. doi:10.1126/science.1076120

    Article  Google Scholar 

  • Briegleb BP, Blitz CM, Hunke EC, Lipscomb WH, Holland MM, Schramm JL, Moritz RE (2004) Scientific description of the sea ice component in the Community Climate System Model Version 3. Technical Note NCAR/TN463+STR, National Center for Atmospheric Research

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2005) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation of the climate system. Clim Dyn 24:545–561. doi:10.1007/s00382-005-0007-6

    Article  Google Scholar 

  • Calov R, Ganopolski A, Kubatzki C, Claussen M (2009) Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity. Clim Past Discuss 5:245–258

    Article  Google Scholar 

  • Claussen M, Brovkin V, Calov R, Ganopolski A, Kubatzki C (2005) Did humankind prevent a Holocene glaciation? Comment on Ruddiman’s hypothesis of a pre-historic Anthropocene. Clim Change 69:409–417. doi:10.1007/s10584-005-7276-2

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blockmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006a) The Community Climate System Model, version 3 (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin S-J, Zhang M (2006b) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161

    Article  Google Scholar 

  • Crucifix M, Loutre MF, Berger A (2006) The climate response to astronomical forcing. Space Sci Rev 125:213–226

    Article  Google Scholar 

  • Cubasch U, Zorita E, Kaspar F, Gonzalez-Rouco JF (2006) Simulation of the role of solar and orbital forcing on climate. J Adv Space Phys 37:1629–1634

    Article  Google Scholar 

  • Danabasoglu G, Large WG, Tribbia JJ, Gent PR, Briegleb BP, McWilliams JC (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19:2347–2365. doi:10.1175/JCLI3739.1

    Article  Google Scholar 

  • de Noblet NI, Prentice IC, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere–biosphere interactions in triggering the Last Glaciation. Geophys Res Lett 23:3191–3194. doi:10.1029/96GL03004

    Article  Google Scholar 

  • Desprat S, Sanchez-Goni MF, Turon JL, McManus JF, Loutre MF, Duprat J, Malaize B, Peyron O, Peypouquet J-P (2005) Is vegetation responsible for glacial inception during periods of muted insolation changes? Quat Sci Rev 24:1361–1374

    Article  Google Scholar 

  • Dong B, Valdes PJ (1995) Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model. J Clim 8:2471–2496

    Article  Google Scholar 

  • Francis JA, Hunter E (2007) Drivers of declining sea ice in the Arctic winter: a tale of two seas. Geophys Res Lett 34:L17503. doi:10.1029/2007GL030995

  • Gent PR, Bryan FO, Danabasoglu G, Doney SC, Holland WR, Large WG, McWilliams JC (1998) The NCAR Climate System Model global ocean component. J Clim 11:1287–1306

    Article  Google Scholar 

  • Gorbarenko SA, Harada N, Malakhov MI, Vasilenko YP, Bosin AA, Goldberg EL (2010) Orbital and millennial-scale environmental and sedimentological changes in the Okhotsk Sea during the last 350 kyr. Glob Planet Change 72:79–85

    Article  Google Scholar 

  • Groll N, Widmann M, Jones J, Kaspar F, Lorenz S (2005) Simulated relationships between regional temperatures and large-scale circulation: 125 kyr BP (Eemian) and the preindustrial period. J Clim 18:4032–4045

    Article  Google Scholar 

  • Hall A, Clement A, Thompson DWJ, Broccoli A, Jackson C (2005) The importance of atmospheric dynamics in the northern hemisphere winter climate response to changes in the earth’s orbit. J Clim 18:1315–1325

    Article  Google Scholar 

  • Harada N, Sato M, Sakamoto T (2008) Freshwater impacts recorded in tetraunsaturated alkenones and alkenone sea surface temperatures from the Okhotsk Sea across millennial-scale cycles. Paleoceanography 23:1–14. doi:10.1029/2006PA001410

    Article  Google Scholar 

  • Kageyama M, Valdes PJ, Ramstein G, Hewitt C, Wyputta U (1999) Northern Hemisphere storm tracks in present day and Last Glacial Maximum climate simulations: a comparison of the European PMIP Models. J Clim 12:742–760

    Article  Google Scholar 

  • Kageyama M, Charbit S, Ritz C, Khodri M, Ramstein G (2004) Quantifying ice-sheet feedbacks during the last glacial inception. Geophys Res Lett 31:L24203. doi:10.1029/2004GL021339

  • Kasper F, Spangehl T, Cubasch U (2007) Northern Hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Clim Past 3:181–192. doi:10.5194/cp-3-181-2007

    Article  Google Scholar 

  • Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410:570–574. doi:10.1038/35069044

    Article  Google Scholar 

  • Kleman J, Jansson K, De Angelis H, Stroeven AP, Hättestrand C, Alm G, Glasser N (2011) North American ice sheet build-up during the last glacial cycle, 115–21 kyr. Quat Sci Rev 29:2036–2051

    Article  Google Scholar 

  • Krinner G, Boucher O, Balkanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27:613–625. doi:10.1007/s00382-006-0159-z

    Article  Google Scholar 

  • Kubatzki C, Claussen M, Calov R, Ganopolski A (2006) Sensitivity of the last glacial inception to initial and surface conditions. Clim Dyn 27:333–344. doi:10.1007/s00382-006-0136-6

    Article  Google Scholar 

  • Kutzbach JE, Ruddiman WF, Vavrus SJ, Philippon G (2009) Climate model test of anthropogenic influence on greenhouse-induced climate change (early agriculture to modern): the role of ocean feedbacks. Clim Change 99:351–381

    Article  Google Scholar 

  • L’Heureux ML, Kumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. J Geophys Res Lett 35:L20701. doi:10.1029/2008GL035205

  • Meisner KJ, Gerdes R (2002) Coupled climate modelling of ocean circulation changes during ice age inception. Clim Dyn 18:455–473

    Google Scholar 

  • Meisner KJ, Weaver AJ, Matthews HD, Cox PJ (2003) The role of land surface dynamics in glacial inception: a study with the UVic earth system model. Clim Dyn 21:515–537

    Article  Google Scholar 

  • Müller UC, Pross J (2007) Lesson from the past: present insolation minimum holds potential for glacial inception. Quat Sci Rev 26:3025–3029. doi:10.1016/j.quascirev.2007.10.006

    Article  Google Scholar 

  • Oglesby RJ (1989) A GCM study of Antarctic glaciations. Clim Dyn 3:135–156

    Article  Google Scholar 

  • Oglesby RJ (1990) Sensitivity of glaciation to initial snow cover, CO2, snow albedo, and oceanic roughness in the NCAR CCM. Clim Dyn 4:219–2351

    Article  Google Scholar 

  • Oleson KW, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G-Y, Thornton P, Vertenstein M, Yang Z-L, Zeng X (2004) Technical description of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-461+STR

  • Otieno FO, Bromwich DH (2009) Contribution of atmospheric circulation to inception of the Laurentide Ice Sheet at 116 kyr BP. J Clim 22:39–57

    Article  Google Scholar 

  • Otto-Bliesner BL, Tomas R, Brady EC, Ammann C, Kothavala Z (2006) Climate sensitivity of moderate- and low-resolution versions of CCSM3 to preindustrial forcings. J Clim 19:2567–2583

    Article  Google Scholar 

  • Roe G (2006) In defense of Milankovitch. J Geophys Res 33:L24703. doi:10.1029/2006GL027817

  • Ruddiman W (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  Google Scholar 

  • Salathé EP Jr (2006) Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys Res Lett 33:l19820. doi:10.1029/2006GL026882

  • Schurgers G, Mikolajewicz U, Grogger M, Maier-Reimer E, Vizcaíno M, Winguth A (2007) The effect of land surface changes on Eemian climate. Clim Dyn 29:357–373

    Article  Google Scholar 

  • Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321

    Article  Google Scholar 

  • Takaya K, Nakamura H (2005) Mechanisms of intraseasonal amplification of the cold Siberian High. J Atmos Sci 62:4423–4440

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Roy Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vettoretti G, Peltier WR (2003a) On Post-Eemian glacial inception. Part I: the impact of summer seasonal temperature bias. J Clim 16:889–911

    Article  Google Scholar 

  • Vettoretti G, Peltier WR (2003b) On Post-Eemian glacial inception. Part II: elements of a cryospheric moisture pump. J Clim 16:912–927

    Article  Google Scholar 

  • Vettoretti G, Peltier WR (2004) Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. Quat Sci Rev 23:499–519

    Article  Google Scholar 

  • Wendler G, Moore B, Hartmann B, Stuefer M, Flint R (2004) Effects of multiple reflection and albedo on the net radiation in the pack ice zones of Antarctica. J Geophys Res 109:D06113. doi:10.1029/2003JD003927

  • Yanase W, Abe-Ouchi A (2010) A numerical study on the atmospheric circulation over the midlatitude North Pacific during the Last Glacial Maximum. J Clim 23:135–151

    Article  Google Scholar 

  • Yoshimori M, Reader MC, Weaver AJ, McFarlane NA (2002) On the causes of glacial inception at 116 ka BP. Clim Dyn 18:383–402. doi:10.1007/s00382-001-0186-8

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by National Science Foundation grant OPP-0352865. We are grateful to the National Center for Atmospheric Research (NCAR) for providing the technical support needed to optimize CCSM3 on the high performance computing platforms and other resources provided through the Scientific Computing Division (SCD-36091015). We also thank the three anonymous reviewers for their comments and suggestions that helped to substantially improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis O. Otieno.

Additional information

Contribution 1389 of Byrd Polar Research Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otieno, F.O., Bromwich, D.H. & Oglesby, R. Atmospheric circulation anomalies due to 115 kyr BP climate forcing dominated by changes in the North Pacific Ocean. Clim Dyn 38, 815–835 (2012). https://doi.org/10.1007/s00382-011-1138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1138-6

Keywords

Navigation