Climate Dynamics

, Volume 38, Issue 11–12, pp 2243–2256 | Cite as

Declining summer snowfall in the Arctic: causes, impacts and feedbacks

  • James A. ScreenEmail author
  • Ian Simmonds


Recent changes in the Arctic hydrological cycle are explored using in situ observations and an improved atmospheric reanalysis data set, ERA-Interim. We document a pronounced decline in summer snowfall over the Arctic Ocean and Canadian Archipelago. The snowfall decline is diagnosed as being almost entirely caused by changes in precipitation form (snow turning to rain) with very little influence of decreases in total precipitation. The proportion of precipitation falling as snow has decreased as a result of lower-atmospheric warming. Statistically, over 99% of the summer snowfall decline is linked to Arctic warming over the past two decades. Based on the reanalysis snowfall data over the ice-covered Arctic Ocean, we derive an estimate for the amount of snow-covered ice. It is estimated that the area of snow-covered ice, and the proportion of sea ice covered by snow, have decreased significantly. We perform a series of sensitivity experiments in which inter-annual changes in snow-covered ice are either unaccounted for, or are parameterized. In the parameterized case, the loss of snow-on-ice results in a substantial decrease in the surface albedo over the Arctic Ocean, that is of comparable magnitude to the decrease in albedo due to the decline in sea ice cover. Accordingly, the solar input to the Arctic Ocean is increased, causing additional surface ice melt. We conclude that the decline in summer snowfall has likely contributed to the thinning of sea ice over recent decades. The results presented provide support for the existence of a positive feedback in association with warming-induced reductions in summer snowfall.


Arctic Precipitation Snow Sea ice Albedo feedback Climate change 



We thank Environment Canada and the ECMWF for making their respective datasets readily available on-line, and the reviewers for their insighful comments that improved the clarity of the manuscript. Parts of this research were supported by funding from the Australian Research Council.


  1. Bekryaev R, Polyakov I, Alexeev V (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906CrossRefGoogle Scholar
  2. Bretherton C, Widmann M, Dymnikov V, Wallace J, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1900–2009CrossRefGoogle Scholar
  3. Cullather R, Bromwich D, Serreze M (2000) The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part I: comparison with observations and previous studies. J Clim 13:923–937CrossRefGoogle Scholar
  4. Curry J, Schramm J, Ebert E (1995) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247CrossRefGoogle Scholar
  5. Curry J, Schramm J, Perovich D, Pinto J (2001) Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J Geophys Res 106:15,345–15,355Google Scholar
  6. Dee D, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135:1830–1841CrossRefGoogle Scholar
  7. Ebert E, Curry J (1993) An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere iteractions. J Geophys Res 98:10,085–10,109CrossRefGoogle Scholar
  8. Finnis J, Holland M, Serreze M, Cassano J (2007) Response of the northern hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the community climate system model. J Geophys Res 112:G04S42. doi: 10.1029/2006JG000286
  9. Forland E, Hanssen-Bauer I (2000) Increased precipitation in the Norwegian Arctic: true or false? Clim Change 46:485–509Google Scholar
  10. Francis J, White D, Cassano J, Gutowski W, Hinzman L, Holland M, Steele M, Vorosmarty C (2009) An Arctic hydrological system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J Geophys Res 114: G04019. doi: 10.1029/2008JG000902
  11. Gillett N, Stone D, Stott P, Nozawa T, Karpecho A, Hegerl G, Wehner M, Jones P (2008) Attribution of polar warming to human influence. Nature Geosci 1:750–754CrossRefGoogle Scholar
  12. Holland M, Finnis J, Barrett A, Serreze M (2007) Projected changes in Arctic Ocean freshwater budgets. J Geophys Res 112: G04S55. doi: 10.1029/2006JG000354
  13. Kattsov V, Walsh J, Chapman W, Govorkova V, Pavlova T, Zhang X (2007) Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J Hydrometeor 8:571–589CrossRefGoogle Scholar
  14. Kaufmann D, Schneider D, McKay N, Ammann C, Bradley R, Briffa K, Miller G, Otto-Bliesner B, Overpeck J, Vinther B, 2k Project Members (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236--1239CrossRefGoogle Scholar
  15. Landerer F, Dickey J, Gntner A (2010) Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J Geophys Res 115: D23115. doi: 10.1029/2010JD014584
  16. Ledley T (1985) The sensitivity of a thermodynamic sea ice model with leads to time step size. J Geophys Res 90:2251–2260CrossRefGoogle Scholar
  17. Ledley T (1991) Snow on sea ice: competing effects in shaping climate. J Geophys Res 96:17,195–17,208CrossRefGoogle Scholar
  18. Ledley T (1993) Variations in snow on sea ice: a mechanism for producing climate variations. J Geophys Res 98:10,401–10,410CrossRefGoogle Scholar
  19. Markus T, Stroeve J, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup and melt season length. J Geophys Res 114: C12024. doi: 10.1029/2009GJC005436
  20. McCabe G, Wolock D (2010) Long-term variability in northern hemisphere snow cover and association with warmer winters. Clim Change 99:141–153CrossRefGoogle Scholar
  21. McClelland J, Dery S, Peterson B, Holmes R, Wood E (2006) A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys Res Lett 33: L06715. doi: 10.1029/2006GL025753
  22. Miller G, Alley R, Brigham-Grette J, Fitzpatrick J, Polyak L, Serreze M, White J (2010) Arctic amplification: can the past constrain the future?. Quat Sci Rev 29:1779–1790CrossRefGoogle Scholar
  23. Min SK, Zhang X, Zweirs F (2008) Human-induced Arctic moistening. Science 320:518–520CrossRefGoogle Scholar
  24. Perovich D, Grenfell T, Light B, Hobbs P (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107: 8044. doi: 10.1029/2000JC000438
  25. Perovich D, Light B, Eicken H, Jones K, Runciman K, Nghiem S (2007) Increased solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34: L19505. doi: 10.1029/2007GL031480
  26. Peterson B, Holmes R, McClelland J, Vorosmarty C, Lammers R, Shiklomanov I, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  27. Peterson B, McClelland J, Curry R, Holmes R, Walsh J, Agaard K (2006) Trajectory shifts in the Arctic and sub-Arctic freshwater cycle. Science 313:1061–1066CrossRefGoogle Scholar
  28. Polyak L, Alley R, Andrews J, Brigham-Grette J, Cronin T, Darby D, Dyke A, Fitzpatrick J, Funder S, Holland M, Jennings A, Miller G, O’Regan M, Savelle J, Serreze M, John K, White J, Wolff E (2010) History of sea ice in the Arctic. Quat Sci Rev 29:1757–1778CrossRefGoogle Scholar
  29. Rawlins M et al (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23:5715–5737CrossRefGoogle Scholar
  30. Rawlins M, Ye H, Yang D, Shiklomanov A, McDonald K (2009) Divergence in seasonal hydrology across northern Eurasia: Emerging trends and water cycle linkages. J Geophys Res 114: D18119. doi: 10.1029/2009JD011747
  31. Screen J, Simmonds I (2010a) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337Google Scholar
  32. Screen J, Simmonds I (2010b) Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys Res Letts 37: L16707. doi: 10.1029/2010GL044136
  33. Screen J, Simmonds I (2011) Erroneous Arctic temperature trends in the ERA-40 reanalysis: a closer look. J Clim 24:2620–2627CrossRefGoogle Scholar
  34. Screen J, Simmonds I, Keay K (2011) Dramatic inter-annual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J Geophys Res. doi: 10.1029/2011JD015847 (in press)
  35. Serreze M, Barrett A (2008) The summer cyclone maximum over the central Arctic Ocean. J Clim 21:1048–1065CrossRefGoogle Scholar
  36. Serreze M, Francis J (2006) The Arctic amplification debate. Clim Change 76:241–264CrossRefGoogle Scholar
  37. Serreze M, Hurst C (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J Clim 13:182–201CrossRefGoogle Scholar
  38. Serreze M, Holland M, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  39. Serreze M, Barrett A, Stroeve J, Kindig D, Holland M (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19CrossRefGoogle Scholar
  40. Simmonds I, Keay K (2009) Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys Res Letts 36: L19715. doi: 10.1029/2009GL039810
  41. Simmonds I, Burke C, Keay K (2008) Arctic climate change as manifest in cyclone behavior. J Clim 21:5777–5796CrossRefGoogle Scholar
  42. Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  43. Simmons A, Willett K, Jones P, Thorne P, Dee D (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115: D01110. doi: 10.1029/2009JD012442
  44. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignot M, Miller H (2007) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  45. Stroeve J, Holland M, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Letts 34: L09501. doi: 10.1029/2007GL029703
  46. Symon C, Arris L, Heal B (2004) Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  47. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett 115:12–18Google Scholar
  48. Warren S, Rigor I, Untersteiner N, Radionov V, Bryazgin N, Aleksandrov Y, Colony R (1999) Snow depth on Arctic sea ice. J Clim 12:1814–1829CrossRefGoogle Scholar
  49. White D, Hinzman L, Alessa L, Cassano J, Chambers M, Falkner K, Francis J, Gutowski W, Holland M, Holmes R, Huntington H, Kane D, Kliskey A, Lee C, McClelland J, Petersen B, Rupp T, Straneo F, Steele M, Woodgate R, Yang D, Yoshokawa K, Zhang T (2007) The Arctic freshwater system: changes and impacts. J Geophys Res 112: G02S54. doi: 10.1029/2006JG000353
  50. Wu P, Wood R, Stott P (2005) Human influence on increasing Arctic river discharges. Geophys Res Letts 32: L02703. doi: 10.1029/2004GL021570

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneMelbourneAustralia

Personalised recommendations