Skip to main content

Advertisement

Log in

Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Niño-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydro 4:1147–1167. doi:10.1175/15257541(2003)004<1147:TVGPCP>2.0.CO;2

    Article  Google Scholar 

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34:L02606. doi:10.1029/2006GL028044

    Article  Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) South Asian Summer Monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092. doi:10.1175/JCLI4035.1

    Article  Google Scholar 

  • Arpe K, Dümenil L, Giorgetta MA (1998) Variability of the Indian monsoon in the ECHAM3 model: sensitivity to sea surface temperature, soil moisture, and the stratospheric quasi-biennial oscillation. J Clim 11:1837–1858

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata Y (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian Summer Monsoon. J Clim 17:3141–3155. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Clim Dyn 33:1017–1032. doi:10.1007/s00382-008-0477-4

    Article  Google Scholar 

  • Chao WC, Chen B (2001) The origin of monsoons. J Atmos Sci 58:3497–3507. doi:10.1175/1520-0469(2001)058<3497:TOOM>2.0.CO;2

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045. doi:10.1175/JCLI3820.1

    Article  Google Scholar 

  • Clark CO, Cole JE, Webster PJ (2000) Indian Ocean SST and Indian Summer Rainfall: predictive relationships and their decadal variability. J Clim 13:2503–2519

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109(C12003). doi:10.1029/2004JC002378

  • Gershunov A, Schneider N, Barnett T (2001) Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: signal or noise? J Clim 14:2486–2492. doi:10.1175/1520-0442(2001)014

    Article  Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804. doi:10.1029/2010GL043712

    Article  Google Scholar 

  • Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham,R, Fereday D, Camp J, Scaife AA, Xavier P, McLean A, Colman A, Cusack S (2010) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev (in press)

  • Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB, McLaren AJ, Hunke EC (2010) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev Discuss 3:1861–1937

    Article  Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Izumo T, de Boyer Montegut C, Luo JJ, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623. doi:10.1175/2008JCLI2158.1

    Article  Google Scholar 

  • Ju J, Slingo JM (1995) The Asian summer monsoon and ENSO. Q J R Meteorol Soc 121:1133–1168

    Article  Google Scholar 

  • Kim HJ, Wang B, Ding Q (2008) The global monsoon variability simulated by CMIP3 coupled climate models. J Clim 21:5271–5294. doi:10.1175/2008JCLI2041.1

    Article  Google Scholar 

  • Krishna Kumar K, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian Monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  • Krishnan R, Swapna P (2009) Significant influence of the Boreal summer monsoon flow on the Indian Ocean response during dipole events. J Clim 22:5611–5634. doi:10.1175/2009JCLI2176.1

    Article  Google Scholar 

  • Krishnan R, Zhang C, Sugi M (2000) Dynamics of breaks in the Indian summer monsoon. J Atmos Sci 57:1354–1372. doi:10.1175/1520-0469

    Article  Google Scholar 

  • Kummerow C et al (2000) The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982. doi:10.1175/15200450(2001)040<1965:TSOTTR>2.0.CO;2

    Article  Google Scholar 

  • Li C, Yanai M (1996) The Onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J Clim 9:358–375. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine, Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL) France 27. ISSN No 1288-1619

  • Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The physical properties of the atmosphere in the New Hadley Centre global environmental model (HadGEM1). Part I: model description and global climatology. J Clim 19:1274–1301. doi:10.1175/JCLI3636.1

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957. doi:10.1175/2010JCLI3541.1

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM study. J Clim 16:834–848. doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2

    Article  Google Scholar 

  • Parthasarathy B, Munot AA, Kothwale SR (1995) Monthly and seasonal rainfall series for all-India homogeneous regions and meteorological subdivisions: 1871–1994. Contributions from Indian Institute of Tropical Meteorology, Pune-411 008, India

  • Rajeevan M, Nanjundiah RS (2009) Coupled model simulations of twentieth century climate of the Indian summer monsoon. Current trends in science, platinum jubilee special volume of the Indian Academy of Sciences. Indian Academy of Science, Bangalore, pp 537–568. Available at http://www.ias.ac.in

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306

    Google Scholar 

  • Rao KG, Goswami BN (1988) Interannual variations of SST over the Arabian Sea and the Indian monsoon: a new perspective. Mon Weather Rev 116:558–568

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407–4435. doi:10.1029/2002JD002670

    Google Scholar 

  • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell T, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J Clim 19(3):446–469. doi:10.1175/JCLI3637.1

    Article  Google Scholar 

  • Reynolds RWT, Smith M, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Shaffrey LC, Stevens IG, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22:1861–1896. doi:10.1175/2008JCLI2508.1

    Article  Google Scholar 

  • Shukla J (1975) Effect of Arabian Sea-surface temperature anomaly on Indian summer monsoon: a numerical experiment with the GFDL model. J Atmos Sci 32(3):503–511

    Article  Google Scholar 

  • Singh GP, Oh JH (2007) Impact of Indian Ocean sea-surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. Int J Climatol 27:1455–1465. doi:10.1002/joc.1485

    Article  Google Scholar 

  • Soman MK, Slingo JM (1997) Sensitivity of the Asian summer monsoon to aspects of sea-surface temperature anomalies in the tropical Pacific Ocean. Q J R Meteorol Soc 123:309–336

    Article  Google Scholar 

  • Sperber KR, Slingo JM, Annamalai H (2000) Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoon. Q J R Meteorol Soc 126:2514–2545

    Article  Google Scholar 

  • Strachan J (2007) Understanding and modelling the climate of the maritime continent. PhD dissertation, University of Reading

  • Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Report 60, Program for climate model diagnosis and intercomparison, Lawrence Livermore National Laboratory, Livermore, California

  • Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO-Monsoon relationship and implications for predictability. Q J R Meteorol Soc 131(607):781–804. doi:10.1256/qj.04.70

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Oldenborgh GJ van, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32(15):L15701. doi:10.1029/2005GL023110

  • Vecchi GA, Harrison DE (2004) Interannual Indian rainfall variability and Indian Ocean Sea surface temperature anomalies. In: Wang C, Xie SP, Carton JA (eds) Earth climate: the ocean–atmosphere interaction. American Geophysical Union, Geophysical Monograph 147, Washington DC, pp 247–260

  • Walker GT (1925) Correlation in seasonal variations of weather—a further study of world weather. Mon Wea Rev 53(6):252–254. doi:10.1175/1520-0493(1925)53<252:cisvow>2.0co;2

    Google Scholar 

  • Washington WM, Chervin RM, Rao GV (1977) Effects of a variety of Indian Ocean surface temperature anomaly patterns on the summer monsoon circulation: experiments with the NCAR general circulation model. Pure Appl Geophys 115:1335–1356

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ (2008) PC2: a prognostic cloud fraction and condensation scheme I: scheme description. Q J R Meteorol Soc 134:2093–2107. doi:10.1002/qj.333

    Article  Google Scholar 

  • Xie P, Arkin PA (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

Download references

Acknowledgments

Richard Levine was supported by the Joint Department of Energy and Climate Change (DECC) and Department for Environment, Food and Rural Affairs (Defra) Integrated Climate Programme, DECC/Defra (GA01101). Andrew Turner was supported via the National Centre for Atmospheric Science—Climate directorate, a collaborative centre of the Natural Environment Research Council. The authors would like to thank Gill Martin for comments on earlier drafts of the manuscript, and two anonymous reviewers for comments which helped to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, R.C., Turner, A.G. Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38, 2167–2190 (2012). https://doi.org/10.1007/s00382-011-1096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1096-z

Keywords

Navigation