Climate Dynamics

, Volume 38, Issue 9–10, pp 2089–2097 | Cite as

Climate change projections and stratosphere–troposphere interaction

  • Adam A. Scaife
  • Thomas Spangehl
  • David R. Fereday
  • Ulrich Cubasch
  • Ulrike Langematz
  • Hideharu Akiyoshi
  • Slimane Bekki
  • Peter Braesicke
  • Neal Butchart
  • Martyn P. Chipperfield
  • Andrew Gettelman
  • Steven C. Hardiman
  • Martine Michou
  • Eugene Rozanov
  • Theodore G. Shepherd
Article

Abstract

Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections.

Keywords

Climate change Europe Stratosphere Storm track 

References

  1. Blackmon ML (1976) A climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J Atmos Sci 33:1607–1623CrossRefGoogle Scholar
  2. Boville BA (1984) The influence of the polar night jet on the tropospheric circulation in a GCM. J Atm Sci 41:1132–1142CrossRefGoogle Scholar
  3. Butchart N, Scaife AA (2001) Removal of chlorofluorocarbons through increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410:799–801CrossRefGoogle Scholar
  4. Butchart N, Cionni I, Eyring V, Shepherd TG, Waugh DW, Akiyoshi H, Austin J, Brühl C, Chipperfield MP, Cordero E, Dameris M, Deckert R, Dhomse S, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Kinnison DE, Li F, Mancini E, McLandress C, Pawson S, Pitari G, Plummer DA, Rozanov E, Sassi F, Scinocca JF, Shibata K, Steil B, Tian W (2010) Chemistry: climate model simulations of twenty-first century stratospheric climate and circulation changes. J Clim 23:5349–5374CrossRefGoogle Scholar
  5. Charlton-Perez A et al (2008) The frequency and dynamics of stratospheric sudden warmings in the twenty-first century. J Geophys Res 113:D16116. doi:10.1029/2007JD009571 CrossRefGoogle Scholar
  6. Cordero EC, Forster PM (2006) Stratospheric variability and trends in models used for the IPCC AR4. Atmos Chem Phys 6:5369–5380CrossRefGoogle Scholar
  7. Dankers R, Feyen L (2008) Climate change impact on flood hazard in Europe. J Geophys Res 113:D19105. doi:10.1029/2007JD009719 CrossRefGoogle Scholar
  8. Eady E (1949) Long waves and cyclone waves. Tellus 1:33–52CrossRefGoogle Scholar
  9. Frierson DMW, Lu J, Chen G (2007) Width of the Hadley cell in simple and comprehensive general circulation models. Geophys Res Lett 34:L18804. doi:10.1029/2007GL031115 CrossRefGoogle Scholar
  10. Geng Q, Sugi M (2003) Possible change in extratropical cyclone activity due to enhanced greenhouse gases and sulphate aerosols: study with a high resolution AGCM. J Clim 16:2262–2274CrossRefGoogle Scholar
  11. Gillett NP (2005) Climate modelling: northern hemisphere circulation. Nature 437:496. doi:10.1038/437496a CrossRefGoogle Scholar
  12. Huebener H et al (2007) Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere general circulation model. Phil Trans R Soc A 365:2089–2101CrossRefGoogle Scholar
  13. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728CrossRefGoogle Scholar
  14. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. Technical report, vol 18. Deutsches Klimarechenzentrum, HamburgGoogle Scholar
  15. Manzini E, McFarlane NA (1998) The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J Geophys Res 103:31523–31539. doi:10.1029/98JD02274 CrossRefGoogle Scholar
  16. Martin G et al (2006) The physical properties of the atmosphere in the New Hadley centre global atmospheric model (HadGEM1): Part I: model description and global climatology. J Clim 19:1274–1301CrossRefGoogle Scholar
  17. Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20 km mesh atmospheric global circulation model. J Geophys Res 114:D12114. doi:10.1029/2009JD011919 CrossRefGoogle Scholar
  18. McLandress C, Shepherd TG (2009) Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to higher latitudes. J Clim 22:1516–1540CrossRefGoogle Scholar
  19. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  20. Morgenstern O, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield MP, Cugnet D, Deushi M, Dhomse SS, Garcia RR, Gettelman A, Gillett NP, Hardiman SC, Jumelet J, Kinnison DE, Lamarque J-F, Lott F, Marchand M, Michou M, Nakamura T, Olivie D, Peter T, Plummer D, Pyle JA, Rozanov E, Saint-Martin D, Scinocca JF, Shibata K, Sigmond M, Smale D, Teyssedre H, Tian W, Voldoire A, Yamashita Y (2009) Anthropogenic forcing of the northern annular mode in CCMVal-2 models. J Geophys Res 115:D00M03. doi:101029/2009JD013347 CrossRefGoogle Scholar
  21. Morgenstern O et al (2010) Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcing. J Geophys Res 115:D00M02. doi:10.1029/2009JD013728 CrossRefGoogle Scholar
  22. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  23. Pawson S, Kodera K, Hamilton K, Shepherd TG, Beagley SR, Boville BA, Farrara JD, Fairlie TDA, Kitoh A, Lahoz WA, Langematz U, Manzini E, Rind DH, Scaife AA, Shibata K, Simon P, Swinbank R, Takacs L, Wilson RJ, Al-Saadi JA, Amodei M, Chiba M, Coy L, de Grandpre J, Eckman RS, Fiorino M, Grose WL, Koide H, Koshyk JN, Li D, Lerner J, Mahlman JD, McFarlane NA, Mechoso CR, Molod A, O’Neill A, Pierce RB, Randel WJ, Rood RB, Wu F (2000) The GCM-reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull Am Met Soc 81:781–796CrossRefGoogle Scholar
  24. Perlwitz J, Graf H (1995) The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J Clim 8:2281–2295CrossRefGoogle Scholar
  25. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in the storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:2–3. doi:10.1007/s00382-007-0230-4 CrossRefGoogle Scholar
  26. Ringer MA et al (2006) The physical properties of the atmosphere in the New Hadley centre global atmospheric model (HadGEM1): Part II: global variability and regional climate. J Clim 19:1302–1326CrossRefGoogle Scholar
  27. Scaife AA, Butchart N, Warner CD, Swinbank R (2002) Impact of a spectral gravity wave parametrization on the stratosphere in the met office unified model. J Atmos Sci 59:1473–1489CrossRefGoogle Scholar
  28. Scaife AA, Knight JR, Vallis G, Folland CK (2005) A stratospheric influence on the winter NAO and north Atlantic surface climate. Geophys Res Lett 32:L18715CrossRefGoogle Scholar
  29. Shaw TA, Shepherd TG (2008) Raising the roof. Nat Geosci 1:12–13CrossRefGoogle Scholar
  30. Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455. doi:10.1038/20905 CrossRefGoogle Scholar
  31. Sigmond M, Scinocca JF, Kushner PJ (2008) Impact of the stratosphere on tropospheric climate change. Geophys Res Lett 35:L12706. doi:10.1029/2008GL033573 CrossRefGoogle Scholar
  32. Solomon S et al (2007) Climate change: the physical science basis. Cambridge University Press, Cambridge, p 996Google Scholar
  33. Son S-W, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science 320:1486–1489CrossRefGoogle Scholar
  34. Wang XL, Swail VR, Zwiers F, Zhang X, Fang Y (2008) Detection of external influence on trends in atmospheric storminess and northern ocean wave heights. Clim Dyn 32:189–203CrossRefGoogle Scholar
  35. Wittman MAH, Polvani LM, Scott RK, Charlton AJ (2004) Stratospheric influence on baroclinic lifecycles and its connection to the Arctic oscillation. Geophys Res Lett 31:L16113. doi:10.1029/2004GL020503 CrossRefGoogle Scholar
  36. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of twenty-first century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2011

Authors and Affiliations

  • Adam A. Scaife
    • 1
  • Thomas Spangehl
    • 2
  • David R. Fereday
    • 1
  • Ulrich Cubasch
    • 2
  • Ulrike Langematz
    • 2
  • Hideharu Akiyoshi
    • 3
  • Slimane Bekki
    • 4
  • Peter Braesicke
    • 5
  • Neal Butchart
    • 1
  • Martyn P. Chipperfield
    • 6
  • Andrew Gettelman
    • 7
  • Steven C. Hardiman
    • 1
  • Martine Michou
    • 8
  • Eugene Rozanov
    • 9
  • Theodore G. Shepherd
    • 10
  1. 1.Met Office Hadley CentreExeterUK
  2. 2.Freie Universitaet BerlinBerlinGermany
  3. 3.National Institute for Environmental StudiesTsukubaJapan
  4. 4.LATMOS-IPSL, UVSQ, UPMC, CNRS/INSUParisFrance
  5. 5.University of CambridgeCambridgeUK
  6. 6.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  7. 7.National Center for Atmospheric ResearchBoulderUSA
  8. 8.GAME/CNRM (Meteo France, CNRS)ToulouseFrance
  9. 9.PMOD/WRC and ETHZDavosSwitzerland
  10. 10.University of TorontoTorontoCanada

Personalised recommendations