Skip to main content

Advertisement

Log in

COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study presents an evaluation of a new biosphere-atmosphere Regional Climate Model. COSMO-CLM2 results from the coupling between the non-hydrostatic atmospheric model COSMO-CLM version 4.0 and the Community Land Model version 3.5 (CLM3.5). In this coupling, CLM3.5 replaces a simpler land surface parameterization (TERRA_ML) used in the standard COSMO-CLM. Compared to TERRA_ML, CLM3.5 comprises a more complete representation of land surface processes including hydrology, biogeophysics, biogeochemistry and vegetation dynamics. Historical climate simulations over Europe with COSMO-CLM and with the new COSMO-CLM2 are evaluated against various data products. The simulated climate is found to be substantially affected by the coupling with CLM3.5, particularly in summer. Radiation fluxes as well as turbulent fluxes at the surface are found to be more realistically represented in COSMO-CLM2. This subsequently leads to improvements of several aspects of the simulated climate (cloud cover, surface temperature and precipitation). We show that a better partitioning of turbulent fluxes is the central factor allowing for the better performances of COSMO-CLM2 over COSMO-CLM. Despite these improvements, some model deficiencies still remain, most notably a substantial underestimation of surface net shortwave radiation. Overall, these results highlight the importance of land surface processes in shaping the European climate and the benefit of using an advanced land surface model for regional climate simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Anders I, Rockel B (2009) The influence of prescribed soil type distribution on the representation of present climate in a regional climate model. Clim Dyn 33(2–3):177–186. doi:10.1007/s00382-008-0470-y

    Article  Google Scholar 

  • Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3(8):525–532. doi:10.1038/ngeo905

    Article  Google Scholar 

  • Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108(4):293–315

    Article  Google Scholar 

  • Avissar R, Pielke R (1989) A parameterization of heterogeneous land surfaces for atmospheric numerical-models and its impact on regional meteorology. Mon Weather Rev 117(10):2113–2136

    Article  Google Scholar 

  • Avissar R, Pielke R (1991) The impact of plant stomatal control on mesoscale atmospheric circulations. Agric For Meteorol 54(2–4):353–372

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ, Schofield N, Tagg AF (1984) Testing a physically based flood forecasting model (TOPMODEL) for 3 UK catchments. J Hydrol 69(1–4):119–143

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Sci Agric 320(5882):1444–1449. doi:10.1126/science.1155121

    Google Scholar 

  • Bonan G, Levis S (2006) Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J Clim 19(11):2290–2301

    Article  Google Scholar 

  • Bonan G, Levis S, Kergoat L, Oleson K (2002) Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16(2):1021. doi:10.1029/2000GB001360

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Ráisänen J, Rinke A, Sarr A, Whetton P (2007a) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007b) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81(Suppl. 1):1–6. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35(20):L20709. doi:10.1029/2008GL035694

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—a model that includes a laminar boundary layer. Agric For Meteorol 54(2–4):107–136

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model of leaves for C4 plants. Aust J Plant Physiol 19:519–538

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143

    Article  Google Scholar 

  • Denning A, Nicholls M, Prihodko L, Baker I, Vidale P, Davis K, Bakwin P (2003) Simulated variations in atmospheric CO2 over a Wisconsin forest using a coupled ecosystem-atmosphere model. Glob Change Biol 9(9):1241–1250

    Article  Google Scholar 

  • Dickinson RE (1984) Modelling evapotranspiration for three-dimensional global climate models. In: Hansen J, Takahashi T (eds) Geophysical Monograph 29, Maurice Ewing vol 5, Climate processes and climate sensitivity. American Geophysical Union, Washington, pp 58–72

  • Dickinson R, Oleson K, Bonan G, Hoffman F, Thornton P, Vertenstein M, Yang Z, Zeng X (2006) The Community Land Model and its climate statistics as a component of the Community Climate System Model. J Clim 19(11):2302–2324

    Article  Google Scholar 

  • Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2—Multimodel anlysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87(10):1381. doi:10.1175/BAMS-87-10-1381

    Article  Google Scholar 

  • Dougherty RL, Bradford JA, Coyne PI, Sims PL (1994) Applying an empirical model of stomatal conductance to 3 C4 grasses. Agric For Meteorol 67(3–4):269–290

    Article  Google Scholar 

  • Eltahir E (1998) A soil moisture rainfall feedback mechanism 1. Theory and observations. Water Resour Res 34(4):765–776

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthesis co 2 fixation in leaves of C3 species. Planta Med 149:78–90

    Google Scholar 

  • Gilmanov TG, Soussana JE, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121(1–2):93–120. doi:10.1016/j.agee.2006.12.008

    Article  Google Scholar 

  • Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV 139:101–118. doi:10.1051/jp4:2006139008

    Google Scholar 

  • Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, Le Dantec V, Le Goff N, Lemoine D, Lucot E, Ottorini J, Pontailler J, Saugier B (2000) The carbon balance of a young Beech forest. Funct Ecol 14(3):312–325

    Article  Google Scholar 

  • Grasselt R, Schuettemeyer D, Warrach-Sagi K, Ament F, Simmer C (2008) Validation of TERRA-ML with discharge measurements. Meteorol Z 17(6, Sp. Iss. SI):763–773. doi:10.1127/0941-2948/2008/0334

    Article  Google Scholar 

  • Hatakka J, Aalto T, Aaltonen V, Aurela M, Hakola H, Komppula M, Laurila T, Lihavainen H, Paatero J, Salminen K, Viisanen Y (2003) Overview of the atmospheric research activities and results at Pallas GAW station. Boreal Environ Res 8(4):365–383

    Google Scholar 

  • Heald CL, Henze DK, Horowitz LW, Feddema J, Lamarque JF, Guenther A, Hess PG, Vitt F, Seinfeld JH, Goldstein AH, Fung I (2008) Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J Geophys Res 113(D5):D05211. doi:10.1029/2007JD009092

  • Hillel D (1980) Applications of soil physics. Academic Press, New York

    Google Scholar 

  • Hirschi M, Viterbo P, Seneviratne SI (2006) Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis. Geophys Res Lett 33(21):L21401. doi:10.1029/2006GL027659

  • Hohenegger C, Brockhaus P, Bretherton CS, Schaer C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22(19):5003–5020. doi:10.1175/2009JCLI2604.1

    Article  Google Scholar 

  • Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81(Suppl. 1):31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Jaeger EB, Seneviratne SI (in press) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn

  • Jaeger EB, Anders I, Luethi D, Rockel B, Schaer C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4, Sp. Iss. SI):349–367. doi:10.1127/0941-2948/2008/0301

    Article  Google Scholar 

  • Jaeger EB, Stoeckli R, Seneviratne SI (2009) Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM. J Geophys Res 114:D17106. doi:10.1029/2008JD011658

  • Koster RD, Suarez MJ (1995) Relative contributions of land and ocean processes to precipitation variability. J Geophys Res 100(D7):13,775–13,790

    Article  Google Scholar 

  • Kothe S, Dobler A, Beck A, Ahrens B (in press) The radiation budget in a regional climate model. Clim Dyn

  • Kumar SV, Peters-Lidard CD, Eastman JL, Tao WK (2008) An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ Model Softw 23(2):169–181. doi:10.1016/j.envsoft.2007.05.012

    Article  Google Scholar 

  • Laurila T, Soegaard H, Lloyd C, Aurela M, Tuovinen J, Nordstroem C (2001) Seasonal variations of net CO2 exchange in European Arctic ecosystems. Theor Appl Climatol 70(1–4):183–201

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112(G1):G01023. doi:10.1029/2006JG000168

  • Levis S, Wiedinmyer C, Bonan G, Guenther A (2003) Simulating biogenic volatile organic compound emissions in the Community Climate System Model. J Geophys Res 108(D21):4659. doi:10.1029/2002JD003203

    Google Scholar 

  • Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37:L09703. doi:10.1029/2010GL042764

  • Lu L, Pielke R, Liston G, Parton W, Ojima D, Hartman M (2001) Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States. J Clim 14(5):900–919

    Article  Google Scholar 

  • Marcolla B, Cescatti A, Montagnani L, Manca G, Kerschbaumer G, Minerbi S (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agric For Meteorol 130(3–4):193–206. doi:10.1016/j.agrformet.2005.03.006

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) Hierarchy of turbulence closure models for planetary boundary-layers. J Atmos Sci 31(7):1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure-model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Milyukova I, Kolle O, Varlagin A, Vygodskaya N, Schulze E, Lloyd J (2002) Carbon balance of a southern taiga spruce stand in European Russia. Tellus Ser B-Chem Phys Meteorol 54(5):429–442

    Article  Google Scholar 

  • Mitchell T, Jones P (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Muhlbauer A, Lohmann U (2009) Sensitivity studies of aerosol-cloud interactions in mixed-phase orographic precipitation. J Atmos Sci 66(9):2517–2538. doi:10.1175/2009JAS3001.1

    Article  Google Scholar 

  • Niu G, Yang Z, Dickinson R, Gulden L (2005) A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J Geophys Res 110(D21):D21106. doi:10.1029/2005JD006111

  • Niu GY, Yang ZL, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112(D7):D07103. doi:10.1029/2006JD007522

  • Oleson KW, Dai Y, Bonan GB, Bosilovich M, Dickinson RE, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu GY, Thornton PE, Vertenstein M, Yang ZL, Zeng X (2004) Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, Natl. Cent. for Atmos. Res., Boulder

  • Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stoeckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113(G1):G01021. doi:10.1029/2007JG000563

  • Pielke R, Avissar R, Raupach M, Dolman A, Zeng X, Denning A (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4(5):461–475

    Article  Google Scholar 

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23(5):479–510

    Article  Google Scholar 

  • Reichstein M, Tenhunen J, Roupsard O, Ourcival J, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses?. Glob Change Biol 8(10):999–1017

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11(9):1424–1439. doi:10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Richardson A, Hollinger D, Burba G, Davis K, Flanagan L, Katul G, Munger J, Ricciuto D, Stoy P, Suyker A, Verma S, Wofsy S (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric For Meteorol 136(1–2):1–18. doi:10.1016/j.agrformet.2006.01.007

    Article  Google Scholar 

  • Ritter B, Geleyn J (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (eds) (2008) Special issue: regional climate modelling with COSMO-CLM (CCLM), 4, vol 17. Meteorol Z

  • Rossow W, Schiffer R (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287

    Article  Google Scholar 

  • Schar C, Luthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a regional climate model. J Clim 12(3):722–741

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, HendersonSellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Sci Agric 275(5299):502–509

    Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Smiatek G, Rockel B, Schaettler U (2008) Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM). Meteorol Z 17(4, Sp. Iss. SI):395–405. doi:10.1127/0941-2948/2008/0302

    Article  Google Scholar 

  • Steiner A, Pal J, Giorgi F, Dickinson R, Chameides W (2005) The coupling of the Common Land Model (CLM0) to a regional climate model (RegCM). Theor Appl Climatol 82(3–4):225–243. doi:10.1007/s00704-005-0132-5

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Stöckli R, Lawrence DM, Niu GY, Oleson KW, Thornton PE, Yang ZL, Bonan GB, Denning AS, Running SW (2008) Use of FLUXNET in the community land model development. J Geophys Res 113(G1):G01025. doi:10.1029/2007JG000562

  • Suni T, Rinne J, Reissell A, Altimir N, Keronen P, Rannik U, Dal Maso M, Kulmala M, Vesala T (2003) Long-term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern Finland, 1996–2001. Boreal Environ Res 8(4):287–301

    Google Scholar 

  • Teuling AJ, Seneviratne SI, Stoeckli R, Reichstein M, Moors E, Ciais P, Luyssaert S, van den Hurk B, Ammann C, Bernhofer C, Dellwik E, Gianelle D, Gielen B, Gruenwald T, Klumpp K, Montagnani L, Moureaux C, Sottocornola M, Wohlfahrt G (2010) Contrasting response of European forest and grassland energy exchange to heatwaves. Nat Geosci 3(10):722–727. doi:10.1038/NGEO950

    Article  Google Scholar 

  • Thornton PE, Zimmermann NE (2007) An improved canopy integration scheme for a land surface model with prognostic canopy structure. J Clim 20(15):3902–3923. doi:10.1175/JCLI4222.1

    Article  Google Scholar 

  • Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob Biogeochem Cycles 21(4):GB4018. doi:10.1029/2006GB002868

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, VanDe Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131(612, Part B):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wang JW, Denning AS, Lu L, Baker IT, Corbin KD, Davis KJ (2007) Observations and simulations of synoptic, regional, and local variations in atmospheric CO2. J Geophys Res 112(D4):D04108. doi:10.1029/2006JD007410

  • Zahn M, von Storch H (2010) Decreased frequency of North Atlantic polar lows associated with future climate warming. Nat Biotechnol 467(7313):309–312. doi:10.1038/nature09388

    Google Scholar 

  • Zampieri M, D’Andrea F, Vautard R, Ciais P, de Noblet-Ducoudré N, Yiou P (2009) Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J Clim 22(18):4747–4758. doi:10.1175/2009JCLI2568.1

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Daniel Luethi for his technical help regarding the simulation setup. We appreciated the valuable comments from Juergen Helmert and Hermann Asensio concerning TERRA_ML. We would like to thank the following FLUXNET PIs for providing access to their data: Michael Marek (CZBK1), Riccardo Valentini (ITAmp), André Granier (FRHes), Timo Vesala (FIHyy), Tuomas Laurila (FIKaa, FISod), Serge Rambal (FRPue), Stefano Minerbi (ITRen), Marc Aubinet (BEVie), and Martin Heimann (RUFyo). We also acknowledge the use of ferret and R for plots. The computing time was provided by the Swiss National Supercomputing Centre (CSCS). This research has been supported by the Competence Center Environment and Sustainability of the ETH Domain (CCES) through the MAIOLICA project. The National Center for Atmospheric Research is sponsored by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard L. Davin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davin, E.L., Stöckli, R., Jaeger, E.B. et al. COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model. Clim Dyn 37, 1889–1907 (2011). https://doi.org/10.1007/s00382-011-1019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1019-z

Keywords

Navigation