Skip to main content

Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years

Abstract

The individual contributions of insolation and greenhouse gases (GHG) to the interglacial climates of the past 800,000 years are quantified through simulations with a model of intermediate complexity LOVECLIM and using the factor separation technique. The interglacials are compared in terms of their forcings and responses of surface air temperature, vegetation and sea ice. The results show that the relative magnitude of the simulated interglacials is in reasonable agreement with proxy data. GHG plays a dominant role on the variations of the annual mean temperature of both the Globe and the southern high latitudes, whereas, insolation plays a dominant role on the variations of tree fraction, precipitation and of the northern high latitude temperature and sea ice. The Mid-Brunhes Event (MBE) appears to be significant only in GHG and climate variables dominated by it. The results also show that the relative importance of GHG and insolation on the warmth intensity varies from one interglacial to another. For the warmest (MIS-9 and MIS-5) and coolest (MIS-17 and MIS-13) interglacials, GHG and insolation reinforce each other. MIS-11 (MIS-15) is a warm (cool) interglacial due to its high (low) GHG concentration, its insolation contributing to a cooling (warming). MIS-7, although with high GHG concentrations, can not be classified as a warm interglacial due to it large insolation-induced cooling. Related to these two forcings, MIS-19 appears to be the best analogue for MIS-1. In the response to insolation, the annual mean temperatures averaged over the globe and over southern high latitudes are highly linearly correlated with obliquity. However, precession becomes important in the temperature of the northern high latitudes and controls the tree fraction globally. Over the polar oceans, the response during the local winters, although the available energy is small, is larger than during the local summers due to the summer remnant effect. The sensitivity to double CO2 is the highest for the coolest interglacial.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Article  Google Scholar 

  2. Berger A (2001) The role of CO2, sea-level and vegetation during the Milankovitch-forced glacial-interglacial cycles. In: Bengtsson LO, Hammer UC (eds) Geosphere-biosphere interactions and climate. Cambridge University Press, New York, pp 119–146

    Chapter  Google Scholar 

  3. Berger A, Loutre MF (1994) Long-term variations of the astronomical seasons. In: Boutron CL (ed) Topics in atmospheric and interstellar physics and chemistry. Les Editions de Physique, Les Ulis, pp 33–61

    Google Scholar 

  4. Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297:1287–1288

    Article  Google Scholar 

  5. Berger A, Loutre MF (2003) Climate 400,000 years ago, a key to the future? In: Droxler A, Burckle L and Poore A (eds) Earth climate and orbital eccentricity: the marine isotope stage 11 question. Geophysical monograph 137, American geophysical union, Washington, pp 17–26

  6. Berger A, Pestiaux P (1984) Accuracy and stability of the quaternary terrestrial insolation. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate, Part 1. Reidel Pub. Co., Dordrecht, pp 83–112

    Google Scholar 

  7. Berger A, Loutre MF, Yin QZ (2010) Total irradiation during any time interval of the year using elliptic integrals. Quat Sci Rev 29:1968–1982

    Article  Google Scholar 

  8. Braconnot P, Marti O, Joussaume S, Leclainche Y (2000) Ocean feedback in response to 6 kyr BP insolation. J Clim 13:1537–1553

    Article  Google Scholar 

  9. Brovkin V, Ganapolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Modell 101:251–261

    Article  Google Scholar 

  10. Candy I, Coope GR, Lee JR, Parfitt SA, Preece RC, Rose J, Schreve D (2010) Pronounced warmth during early middle pleistocene interglacials: investigating the mid-brunhes event in the British terrestrial sequence. Earth Sci Rev 103:183–196

    Article  Google Scholar 

  11. Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bull Am Meteorol Soc 74(1):33–48

    Article  Google Scholar 

  12. Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28(6):1011–1014

    Article  Google Scholar 

  13. Claussen M, Fohlmeister J, Ganopolski A, Brovkin V (2006) Vegetation dynamics amplifies precessional forcing. Geophys Res Lett 33:L09709. doi:10.1029/2006GRL026111

    Article  Google Scholar 

  14. Crucifix M, Loutre MF (2002) Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis. Clim Dyn 19:417–433

    Article  Google Scholar 

  15. De Vernal A, Hillaire-Marcel C (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1622–1625

    Article  Google Scholar 

  16. Ganopolski A, Roche DM (2010) On the nature of lead-lag relationships during glacial-interglacial climate transitions. Quat Sci Rev 28:3361–3378

    Article  Google Scholar 

  17. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petouhkov V (1998) The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene. Science 280:1916–1919

    Article  Google Scholar 

  18. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104(C10):23337–23355

    Article  Google Scholar 

  19. Goosse H, Renssen H (2001) A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations. Geophys Res Lett 28:3469–3472

    Article  Google Scholar 

  20. Guo ZT, Berger A, Yin QZ, Qin L (2009) Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past 5:21–31

    Article  Google Scholar 

  21. Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  Google Scholar 

  22. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  23. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger AL et al. (eds) Milankovitch and climate, Part 1, D. Reidel Pub. Co., Dordrecht, pp 269–305

  24. Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, Mclntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles. 2. The100,000-year cycle. Paleoceanography 8(6):699–735

    Article  Google Scholar 

  25. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800, 000 years. Science 317:793–796

    Article  Google Scholar 

  26. Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of a coupled global model of intermediate complexity and an AOGCM for the last interglacial. Clim Dyn 16:799–814

    Google Scholar 

  27. Kukla G, Berger A, Lotti R, Brown J (1981) Orbital signature of interglacials. Nature 290:295–300

    Article  Google Scholar 

  28. Kutzbach JE, Liu XD, Liu ZY, Chen GS (2008) Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280 000 years. Clim Dyn 30:567–579

    Article  Google Scholar 

  29. Li XS, Berger A, Loutre MF (1998) CO2 and northern hemisphere ice volume variations over the middle and late quaternary. Clim Dyn 14(7–8):537–544

    Article  Google Scholar 

  30. Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic delta δ18O records. Paleoceanography 20(1):PA1003. doi:10.1029/2004PA001071

    Article  Google Scholar 

  31. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800, 000 years. Nature 453:383–386

    Article  Google Scholar 

  32. Loutre MF, Berger A, Crucifix M, Desprat S, Sanchez-Goñi MF (2007) Interglacials simulated by the LLN 2-D NH and MoBidiC climate models. In: Sirocko F, Claussen M, Sanchez-Goñi MF, Litt T (eds) The climate of past interglacials, developments in quaternary science. Amsterdam, Elsevier, pp 547–561

    Google Scholar 

  33. Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650, 000–800, 000 years before present. Nature 453:379–382

    Article  Google Scholar 

  34. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554

    Article  Google Scholar 

  35. Marković SB, Hambach U, Catto N, Jovanović M, Buggle B, Machalett B, Zöller L, Glaser B, Frechen M (2009) Middle and late pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quat Int 198:255–266

    Article  Google Scholar 

  36. Murphy JM, Mitchell JFB (1995) Transient response of the Hadley centre coupled ocean-atmosphere model to increasing carbon dioxide. Part II: spatial and temporal structure of response. J Clim 8:57–80

    Article  Google Scholar 

  37. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367

    Google Scholar 

  38. Prokopenko AA, Hinnov LA, Williams DF, Kuzmin MI (2006) Orbital forcing of continental climate during the pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quat Sci Rev 25:3431–3457

    Article  Google Scholar 

  39. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Noda A, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  40. Ruddiman WF, Shackleton NJ, McIntyre A (1986) North Atlantic sea-surface temperatures for the last 1.1 million years. In: Summerhayes CP, Shackleton NJ (eds) North atlantic palaeoceanagraphy. Geological Society Special Publication No. 21, Blackwells, pp 155–173

  41. Schilt A, Baumgartner M, Blunier T, Schwander J, Spahni R, Fischer H, Stocker TF (2010) Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800, 000 years. Quat Sci Rev 29(1–2):182–192

    Article  Google Scholar 

  42. Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50(14):2107–2115

    Article  Google Scholar 

  43. Sun XJ, Luo YL, Huang F, Tian J, Wang PX (2003) Deep-sea pollen from the South China Sea: pleistocene indicators of East Asian monsoon. Marine Geol 201:97–118

    Article  Google Scholar 

  44. Tzedakis PC, Hooghiemstra H, Plike H (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long term vegetation trends. Quat Sci Rev 25:3416–3430

    Article  Google Scholar 

  45. Tzedakis PC, Raynaud D, McManus JF, Berger A, Brovkin V, Kiefer T (2009) Interglacial diversity. Nat Geosci 2(11):751–755

    Article  Google Scholar 

  46. Yin QZ, Berger A (2010) Insolation and CO2 contribution to the interglacial climate before and after the mid-brunhes event. Nat Geosci 3(4):243–246

    Article  Google Scholar 

  47. Yin QZ, Guo ZT (2008) Strong summer monsoon during the cool MIS-13. Clim Past 4:29–34

    Article  Google Scholar 

  48. Yin QZ, Berger A, Crucifix M (2009) Individual and combined effects of ice sheets and precession on MIS-13 climate. Clim Past 5:229–243

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Research Council Advanced Grant EMIS (No 227348 of the Programme `Ideas’). Q.Z.Yin is supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). Access to computer facilities was made easier through sponsorship from S. A. Electrabel, Belgium. Thanks to Hugues Goosse for helpful discussions and two anonymous reviewers for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiu Zhen Yin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yin, Q.Z., Berger, A. Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Clim Dyn 38, 709–724 (2012). https://doi.org/10.1007/s00382-011-1013-5

Download citation

Keywords

  • Interglacials
  • Astronomical theory
  • Insolation
  • CO2
  • Factor separation
  • Paleoclimate modeling