Climate Dynamics

, Volume 36, Issue 9–10, pp 1633–1647 | Cite as

Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon

  • Zhenming Ji
  • Shichang Kang
  • Dongfeng Zhang
  • Chunzi Zhu
  • Jia Wu
  • Ying Xu


A regional climate model coupled with a chemistry-aerosol model is employed to simulate the anthropogenic aerosols including sulfate, black carbon and organic carbon and their direct effect on climate over South Asia. The model is driven by the NCAR/NCEP re-analysis data. Multi-year simulations with half, normal and double emission fluxes are conducted. Results show that the model performs well in reproducing present climate over the region. Simulations of the aerosol optical depth and surface concentration of aerosols are also reasonable although to a less extent. The negative radiative forcing is found at the top of atmosphere and largely depended on emission concentration. Surface air temperature decreases by 0.1–0.5°C both in pre-monsoon and monsoon seasons. The range and intensity of cooling areas enlarge while aerosol emission increases. Changes in precipitation are between −25 and 25%. Different diversifications of rainfall are showed with three emission scenarios. The changes of precipitation are consistent with varieties of monsoon onset dates in pre-monsoon season. In the regions of increasing precipitation, monsoon onset is advanced and vice versa. In northeast India and Myanmar, aerosols lead the India summer monsoon onset advancing 1–2 pentads, and delaying by 1–2 pentads in central and southeast India. These changes are mainly caused by the anomaly of local Hadley circulations and enhancive precipitation. Tibetan Plateau played a crucial role in the circulation changes.


Indian summer monsoon Regional climate model Aerosols Climate effect 


  1. Ashfaq M et al (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. doi:10.1029/2008GL036500 CrossRefGoogle Scholar
  2. Babu SS, Moorthy KK (2002) Aerosol black carbon over a tropical coastal station in India. Geophys Res Lett 29(23):2098. doi:10.1029/2002GL015662 CrossRefGoogle Scholar
  3. Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29(18):1880. doi:10.1029/2002GL015826 CrossRefGoogle Scholar
  4. Collins WD et al (2002) Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J Geophys Res 107(D19):8028. doi:10.1029/2000JD000032 CrossRefGoogle Scholar
  5. Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172CrossRefGoogle Scholar
  6. Dickinson RE et al (1993) Biosphere-Atmosphere Transfer Scheme (BATS) version1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387 + STR, National Center for Atmospheric ResearchGoogle Scholar
  7. Fasullo J, Webster PJ (2003) A hydrological definition of indian monsoon onset and withdrawal. J Climate 16:3200–3211CrossRefGoogle Scholar
  8. Gao XJ et al (2006) Impacts of horizontal resolution and topography on the numerical simulation of East Asia precipitation. Chin J Atmos Sci 30(2):185–192 (in Chinese with English abstract)Google Scholar
  9. Gao XJ et al (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteor Atmos Phys 100:73–86CrossRefGoogle Scholar
  10. Gautam R et al (2009) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36:L06813. doi:10.1029/2008GL036967 CrossRefGoogle Scholar
  11. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29:191–216CrossRefGoogle Scholar
  12. Giorgi F et al (1993a) Development of a second-generation regional climate model (RegCM2). Part I. Boundarylayer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  13. Giorgi F et al (1993b) Development of a second-generation regional climate model (RegCM2). Part II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRefGoogle Scholar
  14. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  15. Habib G et al (2006) Seasonal and interannual variability in absorbing aerosols over India derived form TOMS: relationship to regional meteorology and emission. Atmos Environ 40:1909–1921. doi:10.1016/j.atmosenv.2005.07.077 CrossRefGoogle Scholar
  16. Holtslag AAM et al (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  17. IPCC (2007) Summary for policymaker of climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. Ji ZM et al (2010) Simulation of the aerosols over Asia and its climate effect on China. Chin J Atmos Sci 34(2):262–274 (in Chinese with English abstract)Google Scholar
  19. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  20. Latha KM, Badarinath KVS (2003) Black carbon aerosols over tropical urban environment-A case study. Atmos Res 69:125–133CrossRefGoogle Scholar
  21. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546 CrossRefGoogle Scholar
  22. Lau KM et al (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. doi:10.1007/s00382-006-0114-z CrossRefGoogle Scholar
  23. Leon JF et al (2001) Large-scale advection of continental aerosols during INDOEX. J Geophys Res 106(D22):28427–28440. doi:10.1029/2001JD900023 CrossRefGoogle Scholar
  24. Liou KN (2002) An introduction to atmospheric radiation, 2nd edn. Academic Press, San DiegoGoogle Scholar
  25. Liu JY et al (2003) Study on spatial pattern of land-use change in China during 1995–2000. Sci China Ser D-Earth Sci 46(4):373–384. doi:10.1360/03yd9033 Google Scholar
  26. Liu Y, Sun JR, Bai Y (2009) The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus B 61B:642–656CrossRefGoogle Scholar
  27. Loveland TR et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Remote Sens 21(6–7):1303–1330CrossRefGoogle Scholar
  28. Meehl GA et al (2008) Effects of black carbon aerosols on the Indian monsoon. J Climate 21:2869–2882CrossRefGoogle Scholar
  29. Menon S et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253CrossRefGoogle Scholar
  30. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  31. Ohara T et al (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444CrossRefGoogle Scholar
  32. Pal JS, Giorgi F, Bi XQ et al (2007) Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409CrossRefGoogle Scholar
  33. Pandithurai GS et al (2008) Aerosol radiative forcing during dust events over New Delhi, India. J Geophys Res 113:D13209. doi:10.1029/2008JD009804 CrossRefGoogle Scholar
  34. Pant P et al (2006) Aerosol characteristics at a high-altitude location in central Himalayas: Optical properties and radiative forcing. J Geophys Res 111:D17206. doi:10.1029/2005JD006768
  35. Qian Y, Giorgi F, Huang Y et al (2001) Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus B 53:171–191CrossRefGoogle Scholar
  36. Qian Y et al (2003) Regional climate effects of aerosols over China: Modeling and observation. Tellus B 55:914–934CrossRefGoogle Scholar
  37. Ramanathan V, Carmichael G (2009) Global and regional climate changes due to black carbon. Nature Geosci 1:221–227CrossRefGoogle Scholar
  38. Ramanathan V et al (2005) Atmospheric brown clouds: impact on South Asian climate and hydrologic cycle. Proc Natl Acad Sci 102:5326–5333. doi:10.1073/pnas.0500656102 CrossRefGoogle Scholar
  39. Reynolds RW et al (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625CrossRefGoogle Scholar
  40. Singh RP et al (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966 CrossRefGoogle Scholar
  41. Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/Africa domain. Tellus B 58:51–72CrossRefGoogle Scholar
  42. Tao SY, Chen LX (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang C-P, Krishnamurti TN (eds) Monsoon meteorology (Oxford monographs on geology and geophysics, vol 7). Oxford University Press, New York, pp 60–92Google Scholar
  43. Tripathi SN et al (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32:L08802. doi:10.1029/2005GL022515 CrossRefGoogle Scholar
  44. Venkataraman C et al (2002) Aerosol size and chemical characteristics at Mumbai, India during the INDOEX-IFP (1999). Atmos Environ 36:1979–1991CrossRefGoogle Scholar
  45. Wang B, LinHo (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398CrossRefGoogle Scholar
  46. Xie PP et al (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeor 8:607–625CrossRefGoogle Scholar
  47. Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704CrossRefGoogle Scholar
  48. Zhang H et al (2009) A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv Atmos Sci 26(1):57–66. doi:10.1007/s00376-009-0057-5 CrossRefGoogle Scholar
  49. Zhou TJ, Yu RC (2006) Twentieth century surface air temperature over China and the globe simulation by coupled climate models. J Climate 19(22):5843–5858CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zhenming Ji
    • 1
    • 2
    • 3
  • Shichang Kang
    • 1
    • 4
  • Dongfeng Zhang
    • 5
  • Chunzi Zhu
    • 6
  • Jia Wu
    • 2
  • Ying Xu
    • 2
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface ProcessesInstitute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
  2. 2.National Climate CenterBeijingChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Cryospheric ScienceChinese Academy of SciencesLanzhouChina
  5. 5.Shanxi Meteorological BureauTaiyuanChina
  6. 6.College of Atmospheric ScienceNanjing University of Information Science TechnologyNanjingChina

Personalised recommendations