Skip to main content

Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

Abstract

Dynamical downscaling of ECHAM5 using HIRHAM5 and RCA3 for a northern European domain focused on Scandinavia indicates sustained extreme wind speeds with long recurrence intervals (50 years) and intense winds are not likely to evolve out of the historical envelope of variability until the end of C21st. Even then, significant changes are indicated only in the SW of the domain and across the central Baltic Sea where there is some evidence for relatively small magnitude increases in the 50 year return period wind speed (of up to 15%). There are marked differences in results based on the two Regional Climate Models. Additionally, internal (inherent) variability and initial conditions exert a strong impact on projected wind climates throughout the twenty-first century. Simulations of wind gusts by one of the RCMs (RCA3) indicate some evidence for increased magnitudes (of up to +10%) in the southwest of the domain and across the central Baltic Sea by the end of the current century. As in prior downscaling of ECHAM4, dynamical downscaling of ECHAM5 indicates a tendency towards increased energy density and thus wind power generation potential over the course of the C21st. However, caution should be used in interpreting this inference given the high degree of wind climate projection spread that derives from the specific AOGCM and RCM used in the downscaling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Abild J, Andersen EY, Rosbjerg D (1992a) The climate of extreme winds at The Great Belt, Denmark. J Wind Eng Ind Aerodyn 41(1–3):521–532

    Article  Google Scholar 

  • Abild J, Mortensen NG, Landberg L (1992b) Application of the wind Atlas method to extreme wind-speed data. J Wind Eng Ind Aerodyn 41(1–3):473–484

    Article  Google Scholar 

  • Agustsson H, Olafsson H (2004) Mean gust factors in complex terrain. Meteorol Z 13(2):149–155. doi:10.1127/0941-2948/2004/0013-0149

    Article  Google Scholar 

  • Alexander LV, Tett SFB, Jonsson T (2005) Recent observed changes in severe storms over the United Kingdom and Iceland. Geophys Res Lett 32 (13): L13704. doi:10.1029/2005gl022371

  • Allan R, Tett S, Alexander L (2009) Fluctuations in autumn–winter severe storms over the 1953 British Isles: 1920 to present. Int J Climatol 29:357–371

    Article  Google Scholar 

  • An Y, Pandey MD (2005) A comparison of methods of extreme wind speed estimation. J Wind Eng Ind Aerodyn 93:535–545

    Article  Google Scholar 

  • Barker T, Bashmakov I, Bernstein L, Bogner JE, Bosch PR, Dave R, Davidson OR, Fisher BS, Gupta S, Halsnæs K, Heij GJ, Kahn Ribeiro S, Kobayashi S, Levine MD, Martino DL, Masera O, Metz B, Meyer LA, Nabuurs G-J, Najam A, Nakicenovic N, Rogner H-H, Roy J, Sathaye J, Schock R, Shukla P, Sims REH, Smith P, Tirpak DA, Urge-Vorsatz D, Zhou D (2007) Technical summary. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 70

    Google Scholar 

  • Bärring L, Fortuniak K (2009) Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdeceadal variations in the NW Europe–North Sea region. Int J Climatol 29:373–384

    Article  Google Scholar 

  • Bärring L, von Storch H (2004) Scandinavian storminess since about 1800. Geophys Res Lett 31 (20): L20202.doi:10.1029/2004gl020441

  • Barthelmie RJ (2007) Wind energy: status and trends. Geogr Compass 1(3):275–301

    Article  Google Scholar 

  • Barthelmie RJ, Jensen LE (2010) Evaluation of power losses due to wind turbine wakes at the nysted offshore wind farm. Wind Energy 13:573–586

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301. doi:10.1175/2008jcli2678.1

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Kofli B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Blanco MI (2009) The economics of wind energy. Renew Sustain Energy Rev 13:1372–1382

    Article  Google Scholar 

  • Blechschmidt AM, Bakan S, Grabl H (2009) Large-scale atmospheric circulation patterns during polar low events over the Nordic seas. J Geophys Res 114:D06115. doi:10.1029/2008JD010865

    Article  Google Scholar 

  • Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129(1):5–25

    Article  Google Scholar 

  • Brasseur O, Gallee H, Boyen H, Tricot C (2002) Development and application of a physical approach to estimating wind gusts—reply. Mon Weather Rev 130(7):1936–1942

    Article  Google Scholar 

  • Bury KV (1975) Statistical models in applied sciences. John Wiley ad Sons, New York

    Google Scholar 

  • Businger S (1991) Arctic hurricanes. Am Sci 79(1):18–33

    Google Scholar 

  • Chen SR, Cai CS (2004) Accident assessment of vehicles on long-span bridges in windy environments. J Wind Eng Ind Aerodyn 92(12):991–1024. doi:10.1016/j.jweia.2004.06.002

    Article  Google Scholar 

  • Cheung MMS, Chan BYB (2010) Operational requirements for long-span bridges under strong wind events. J Bridge Eng 15(2):131–143. doi:10.1061/(asce)be.1943-5592.0000044

    Article  Google Scholar 

  • Choi ECC, Hidayat FA (2002) Gust factors for thunderstorm and non-thunderstorm winds. J Wind Eng Ind Aerodyn 90(12–15):1683–1696

    Article  Google Scholar 

  • Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model version 5(ß). Danish Meteorological Institute Technical Report 06–17. http://www.dmi.dk/dmi/index/viden/dmi-publikationer/tekniskerapporter.htm

  • Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J Royal Stat Soc Ser C Appl Stat 52:405–416

    Article  Google Scholar 

  • Cook NJ (1986) The designer’s guide to wind loading of building structures: part 1: background damage survey wind data and structural classification. Butterworths, London

    Google Scholar 

  • Cook NJ (2004) Confidence limits for extreme wind speeds in mixed climates. J Wind Eng Ind Aerodyn 92(1):41–51. doi:10.1016/j.jweia.2003.09.037

    Article  Google Scholar 

  • Cook NJ, Harris RI, Whiting R (2003) Extreme wind speeds in mixed climates revisited. J Wind Eng Ind Aerodyn 91(3):403–422

    Article  Google Scholar 

  • Della-Marta PM, Mathis H, Frei C, Liniger MA, Kleinn J, Appenzeller C (2009) The return period of wind storms over Europe. Int J Climatol 29:437–459

    Article  Google Scholar 

  • Déqué M, Rowell DP, Luthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70. doi:10.1007/s10584-006-9228-x

    Article  Google Scholar 

  • Drost F, Renwick J, Bhaskaran B, Oliver H, McGregor J (2007) Simulation of New Zealand’s climate using a high-resolution nested regional climate model. Int J Climatol 27(9):1153–1169. doi:10.1002/joc.1461

    Article  Google Scholar 

  • Fink AH, Brucher T, Ermert V, Kruger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9(2):405–423

    Article  Google Scholar 

  • Frandsen S, Petersen EL (1993) The importance of a good wind year to start on when building a wind farm. In: European Wind Energy Conference 1993, Travemunde, 8–12 March 1993

  • Gaffney SJ, Robertson AW, Smyth P, Camargo SJ, Ghil M (2007) Probabilistic clustering of extratropical cyclones using regression mixture models. Clim Dyn 29(4):423–440. doi:10.1007/s00382-007-0235-z

    Article  Google Scholar 

  • Giorgi F (2005) Interdecadal variability of regional climate change: implications for the development of regional climate change scenarios. Meteorol Atmos Phys 89(1–4):1–15. doi:10.1007/s00703-005-0118-y

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Article  Google Scholar 

  • Goyette S (2008) Development of a model-based high-resolution extreme surface wind climatology for Switzerland. Nat Hazards 44(3):329–339. doi:10.1007/s11069-007-9130-5

    Article  Google Scholar 

  • Goyette S, Brasseur O, Beniston M (2003) Application of a new wind gust parameterization: multiscale case studies performed with the Canadian regional climate model. J Geophys Res 108:D13. doi:10.1029/2002jd002646

    Article  Google Scholar 

  • Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn 58:199–212

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68:813–814

    Google Scholar 

  • Guedes Soares C, Scotto MG (2004) Application of the r largest-order statistics for long-term predictions of significant wave height. Coast Eng 51:387–394

    Article  Google Scholar 

  • Hanafusa T, Lee CB, Lo AK (1986) Dependence of the exponent in power law profiles on stability and height interval. Atmos Environ 20(10):2059–2066

    Article  Google Scholar 

  • Hau E (2006) Wind turbines fundamentals technologies application, economics. Birkhäuser, Basel

    Google Scholar 

  • Haugen JE, Iversen T (2008) Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios. Tellus Ser A Dyn Meteorol Oceanogr 60(3):411–426. doi:10.1111/j.1600-0870.2008.00315.x

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate projections. Bull Am Meteorol Soc 90(8):1095–1107. doi:10.1175/2009bams2607.1

    Article  Google Scholar 

  • Hennessey JP (1977) Some aspects of wind power statistics. J Appl Meteorol 16:119–128

    Article  Google Scholar 

  • Höglund A, Meier HEM, Broman M, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere model RCA3.0. Oceanografi, vol 97. SMHI, Stockholm

  • International energy agency (2008) World energy outlook: 2008. OECD/IEA

  • Kaurola J (1997) Some diagnostics of the Northern wintertime climate simulated by the ECHAM3 model. J Clim 10(2):201–222

    Article  Google Scholar 

  • Kite GW (1974) Case study of regional analysis techniques for design flood estimation. Can J Earth Sci 11(6):801–808

    Google Scholar 

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2010) European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus Ser A Dyn Meteorol Oceanogr. doi: 10.1111/j.1600-0870.2010.00475.x

  • Knote C, Heinemann G, Rockel B (2010) Changes in weather extremes: assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorol Z 19(1):11–23. doi:10.1127/0941-2948/2010/0424

    Article  Google Scholar 

  • Larsen XG, Mann J (2006) The effects of disjunct sampling and averaging time on maximum mean wind speeds. J Wind Eng Ind Aerodyn 94:581–602

    Article  Google Scholar 

  • Leckebusch G, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob Planet Change 44:181–193

    Article  Google Scholar 

  • Lionello P, Boldrin U, Giorgi F (2008a) Future changes in cyclone climatology over Europe as inferred from a regional climate distribution. Clim Dyn 30:657–671

    Article  Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2008b) The Mediterranean surface wave climate inferred from future climate scenarios. Glob Planet Change 63:152–161

    Article  Google Scholar 

  • Lombardo FT, Main JA, Simiu E (2009) Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis. J Wind Eng Ind Aerodyn 97(3–4):120–131. doi:10.1016/j.jweia.2009.03.001

    Article  Google Scholar 

  • Löptien U, Zolina O, Gulev S, Latif M, Soloviov V (2008) Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs. Clim Dyn 31(5):507–532. doi:10.1007/s00382-007-0355-5

    Article  Google Scholar 

  • Luksch U, Raible CC, Blender R, Fraedrich K (2005) Decadal cyclone variability in the North Atlantic. Meteorol Z 14(6):747–753. doi:10.1127/0941-2948/2005/0075

    Article  Google Scholar 

  • Mann J, Kristensen L, Jensen NO (1998) Uncertainties of extreme winds, spectra, and coherences. In: Larsen A, Esdahl S (eds) Bridge aerodynamics. Balkerna, Rotterdam, pp 49–56

    Google Scholar 

  • May W (2008) Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim Dyn 30:581–603. doi:10.1007/s00382-007-0309-y

    Article  Google Scholar 

  • Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull Am Meteorol Soc 81(3):427–436

    Article  Google Scholar 

  • Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction can it be skillful? Bull Am Meteorol Soc 90(10):1467–1485. doi:10.1175/2009bams2778.1

    Article  Google Scholar 

  • Minciarelli F, Gioffre M, Grigoriu M, Simiu E (2001) Estimates of extreme wind effects and wind load factors: influence of knowledge uncertainties. Probab Eng Mech 16(4):331–340

    Article  Google Scholar 

  • Naess A, Clausen PH (2001) Combination of the peaks-over-threshold and bootstrapping methods for extreme value prediction. Struct Saf 23:315–330

    Article  Google Scholar 

  • Naess A, Gaidai O (2009) Estimation of extreme values from sampled time series. Struct Saf 31:325–334

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Emissions scenarios. Cambridge University Press, UK

    Google Scholar 

  • Neufeldt H, Jochem E, Hinkel J, Huitema D, Massey E, Watkiss P, McEvoy D, Rayner T, Hof A, Lonsdale K (2010) Climate policy and inter-linkages between adaptation and mitigation. In: Hulme M, Neufeldt H (eds) Making climate change work for us. Cambridge University Press, Cambridge, p 413

    Google Scholar 

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2010) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus Ser A Dyn Meteorol Oceanogr. doi:10.1111/j.1600-0870.2010.00466.x

  • Nilsson C, Stjernquist I, Barring L, Schlyter P, Jonsson A, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. For Ecol Manag 199:165–173

    Article  Google Scholar 

  • Nilsson C, Goyette S, Barring L (2007) Relating forest damage data to the wind field from high-resolution RCM simulations: case study of Anatol striking Sweden in December 1999. Glob Planet Change 57(1–2):161–176. doi:10.1016/j.gloplacha.2006.11.011

    Article  Google Scholar 

  • Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorol Appl 6:119–132

    Article  Google Scholar 

  • Payer T, Kuchenhoff H (2004) Modelling extreme wind speeds at a German weather station as basic input for a subsequent risk analysis for high-speed trains. J Wind Eng Ind Aerodyn 92(3–4):241–261. doi:10.1016/j.jweia.2003.10.006

    Article  Google Scholar 

  • Petersen E, Mortensen L, Landberg L, Højstrup J, Frank H (1998) Wind power meteorology. Part I: climate and turbulence. Wind Energy 1:2–22

    Article  Google Scholar 

  • Pimentel D, Herz M, Glickstein M, Zimmerman M, Allen R, Becker K, Evans J, Hussain B, Sarsfeld R, Grosfeld A, Seidel T (2002) Renewable energy: current and potential issues. Bioscience 52(12):1111–1120

    Article  Google Scholar 

  • Pinto JG, Frohlich EL, Leckebusch GC, Ulbrich U (2007a) Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Nat Hazards Earth Syst Sci 7(1):165–175

    Article  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007b) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29(2–3):195–210. doi:10.1007/s00382-007-0230-4

    Article  Google Scholar 

  • Pinto JG, Neuhaus CP, Kruger A, Kerschgens M (2009a) Assessment of the Wind Gust Estimate Method in mesoscale modelling of storm events over West Germany. Meteorol Z 18(5):495–506. doi:10.1127/0941-2948/2009/0402

    Article  Google Scholar 

  • Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009b) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32(5):711–737. doi:10.1007/s00382-008-0396-4

    Article  Google Scholar 

  • Pinto JG, Neuhaus CP, Leckebusch GC, Reyers M, Kerschgens M (2010) Estimation of wind storm impacts over Western Germany under future climate conditions using a statistical-dynamical downscaling approach. Tellus Ser A Dyn Meteorol Oceanogr 62A(2):188–201. doi:10.1111/j.1600-0870.2009.00424.x

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ (2010) Assessing the vulnerability of wind energy to climate change and extreme events. In: Toth F (ed) Extreme weather and the energy sector. International Atomic Energy Authority, Vienna, p 66

    Google Scholar 

  • Pryor SC, Ledolter J (2010) Addendum to: wind speed trends over the contiguous USA. J Geophys Res 115: D10103. doi:10.1029/2009JD013281

  • Pryor SC, Schoof JT (2010) Importance of the SRES in projections of climate change impacts on near-surface wind regimes. Meteorol Z 19(3):267–274

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Kjellström E (2005a) Analyses of the potential climate change impact on wind energy resources in northern Europe using output from a regional climate model. Clim Dyn 25:815–835

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Schoof JT (2005b) The impact of non-stationarities in the climate system on the definition of ‘a normal wind year’: a case study from the Baltic. Int J Climatol 25:735–752

    Article  Google Scholar 

  • Pryor SC, Schoof JT, Barthelmie RJ (2006) Winds of change? Projections of near-surface winds under climate change scenarios. Geophys Res Lett 33:L11702. doi:10.1029/2006GL026000

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory D, Gutowski WJ, Nunes A, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res 114:D14105. doi:10.1029/2008jd011416

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Mancini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. vol Meteorol. Report 349. Max-Plank Institute, Hamburg. http://www.mpimet.mpg.de/fileadmin/models/echam/mpi_report_349.pdf

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19(16):3771–3791

    Article  Google Scholar 

  • Rosbjerg D (1985) Estimation in partial duration series with independent and dependent peak values. J Hydrol 76(1–2):183–195

    Article  Google Scholar 

  • Samulesson P, Jones C, Willen U, Gollvik S, Hansson U, Kjellström E, Nikulin G, Ullerstig A, Wyser K (2010) The Rossby Centre regional climate model RCA3: model description and performance. Tellus Ser A Dyn Meteorol Oceanogr. doi: 10.1111/j/1600-0870.2010.00478.x

  • Schuenemann KC, Cassano JJ (2009) Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J Geophys Res 114:D20113. doi:10.1029/2009jd011705

  • Siegismund F, Schrum C (2001) Decadal changes in the wind forcing over the North Sea. Clim Res 18(1–2):39–45

    Article  Google Scholar 

  • Sims REH, Schock RN, Adegbululgbe A, Fenhann J, Konstantinaviciute I, Moomaw W, Nimir HB, Schlamadinger B, Torres-Martínez J, Turner C, Uchiyama Y, Vuori SJV, Wamukonya N, Zhang X (2007) Energy supply. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 252–322

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Soomere T, Behrens A, Tuomi L, Nielsen JW (2008) Wave conditions in the Baltic proper and in the Gulf of Finland during windstorm Gudrun. Nat Hazards Earth Syst Sci 8(1):37–46

    Article  Google Scholar 

  • Stork CHJ, Butterfield CP, Holley W, Madsen PH, Jensen PH (1998) Wind conditions for wind turbine design proposals for revision of the IEC 1400–1 standard. J Wind Eng Ind Aerodyn 74–76:443–454

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin S, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Trigo RM, Valente MA, Trigo IF, Miranda PMA, Ramos AM, Paredes D, Garcia-Herrerae R (2008) The impact of North Atlantic Wind and Cyclone Trends on European precipitation and significant wave height in the Atlantic. Trends Dir Clim Res 1146:212–234. doi:10.1196/annals.1446.014

    Google Scholar 

  • Troen I, Petersen EL (1989) European wind atlas. Risø National Laboratory, Roskilde

    Google Scholar 

  • Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manag 135(1–3):155–167

    Article  Google Scholar 

  • Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing northern hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21(8):1669–1679. doi:10.1175/2007jcli1992.1

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96(1–2):117–131. doi::10.1007/s00704-008-0083-8

    Article  Google Scholar 

  • Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA, Jones C, Lenderlink G, McDonald A, McGrath R, Navascues B, Woetman Nielsen N, Ødegaard V, Rodrigues E, Rummukainen M, Rõõm R, Sattler K, Hansen Sass B, Savijärvi H, Wichers Schreur B, Sigg R, The H, Tijm A (2002) HIRLAM-5 scientific documentation. Scientific report. http://hirlam.org

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Buergi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55

    Article  Google Scholar 

  • Verkaik JW (2000) Evaluation of two gustiness models for exposure correction calculations. J Appl Meteorol 39(9):1613–1626

    Article  Google Scholar 

  • Weisse R, Von Storch H, Feser F (2005) Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J Clim 18:465–479

    Article  Google Scholar 

  • Whalen TM, Savage GT, Jeong GD (2004) An evaluation of the self-determined probability-weighted moment method for estimating extreme wind speeds. J Wind Eng Ind Aerodyn 92(3–4):219–239. doi:10.1016/j.jweia.2003.09.042

    Article  Google Scholar 

  • Wieringa J (1973) Gust factors over open water and built-up country. Boundary Layer Meteorol 3:424–441

    Article  Google Scholar 

  • Zahn M, Von Storch H, Bakan S (2008) Climate mode simulation of North Atlantic polar lows in a limited area model. Tellus Ser A Dyn Meteorol Oceanogr 60(4):620–631. doi:10.1111/j.1600-0870.2008.00330.x

    Article  Google Scholar 

Download references

Acknowledgments

Wind speed data from the Westermarkelsdorf station were kindly provided by Deutscher Wetterdienst, Hamburg, Germany, Barry Broman of SMHI assisted with delivery of data from the RCA3 simulations, and Jake Badger of Risø-DTU aided with the data extraction. Financial support was supplied by the National Science Foundation (grants # 0618364, 0828655 and 1019603), Nordic Energy Research and the energy sector in the Nordic countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Pryor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pryor, S.C., Barthelmie, R.J., Clausen, N.E. et al. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Clim Dyn 38, 189–208 (2012). https://doi.org/10.1007/s00382-010-0955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0955-3

Keywords