Climate Dynamics

, Volume 38, Issue 1–2, pp 189–208 | Cite as

Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

  • S. C. PryorEmail author
  • R. J. Barthelmie
  • N. E. Clausen
  • M. Drews
  • N. MacKellar
  • E. Kjellström


Dynamical downscaling of ECHAM5 using HIRHAM5 and RCA3 for a northern European domain focused on Scandinavia indicates sustained extreme wind speeds with long recurrence intervals (50 years) and intense winds are not likely to evolve out of the historical envelope of variability until the end of C21st. Even then, significant changes are indicated only in the SW of the domain and across the central Baltic Sea where there is some evidence for relatively small magnitude increases in the 50 year return period wind speed (of up to 15%). There are marked differences in results based on the two Regional Climate Models. Additionally, internal (inherent) variability and initial conditions exert a strong impact on projected wind climates throughout the twenty-first century. Simulations of wind gusts by one of the RCMs (RCA3) indicate some evidence for increased magnitudes (of up to +10%) in the southwest of the domain and across the central Baltic Sea by the end of the current century. As in prior downscaling of ECHAM4, dynamical downscaling of ECHAM5 indicates a tendency towards increased energy density and thus wind power generation potential over the course of the C21st. However, caution should be used in interpreting this inference given the high degree of wind climate projection spread that derives from the specific AOGCM and RCM used in the downscaling.


Dynamical downscaling Scandinavia Wind climates Energy density 



Wind speed data from the Westermarkelsdorf station were kindly provided by Deutscher Wetterdienst, Hamburg, Germany, Barry Broman of SMHI assisted with delivery of data from the RCA3 simulations, and Jake Badger of Risø-DTU aided with the data extraction. Financial support was supplied by the National Science Foundation (grants # 0618364, 0828655 and 1019603), Nordic Energy Research and the energy sector in the Nordic countries.


  1. Abild J, Andersen EY, Rosbjerg D (1992a) The climate of extreme winds at The Great Belt, Denmark. J Wind Eng Ind Aerodyn 41(1–3):521–532CrossRefGoogle Scholar
  2. Abild J, Mortensen NG, Landberg L (1992b) Application of the wind Atlas method to extreme wind-speed data. J Wind Eng Ind Aerodyn 41(1–3):473–484CrossRefGoogle Scholar
  3. Agustsson H, Olafsson H (2004) Mean gust factors in complex terrain. Meteorol Z 13(2):149–155. doi: 10.1127/0941-2948/2004/0013-0149 CrossRefGoogle Scholar
  4. Alexander LV, Tett SFB, Jonsson T (2005) Recent observed changes in severe storms over the United Kingdom and Iceland. Geophys Res Lett 32 (13): L13704. doi:10.1029/2005gl022371
  5. Allan R, Tett S, Alexander L (2009) Fluctuations in autumn–winter severe storms over the 1953 British Isles: 1920 to present. Int J Climatol 29:357–371CrossRefGoogle Scholar
  6. An Y, Pandey MD (2005) A comparison of methods of extreme wind speed estimation. J Wind Eng Ind Aerodyn 93:535–545CrossRefGoogle Scholar
  7. Barker T, Bashmakov I, Bernstein L, Bogner JE, Bosch PR, Dave R, Davidson OR, Fisher BS, Gupta S, Halsnæs K, Heij GJ, Kahn Ribeiro S, Kobayashi S, Levine MD, Martino DL, Masera O, Metz B, Meyer LA, Nabuurs G-J, Najam A, Nakicenovic N, Rogner H-H, Roy J, Sathaye J, Schock R, Shukla P, Sims REH, Smith P, Tirpak DA, Urge-Vorsatz D, Zhou D (2007) Technical summary. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 70Google Scholar
  8. Bärring L, Fortuniak K (2009) Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdeceadal variations in the NW Europe–North Sea region. Int J Climatol 29:373–384CrossRefGoogle Scholar
  9. Bärring L, von Storch H (2004) Scandinavian storminess since about 1800. Geophys Res Lett 31 (20): L20202.doi:10.1029/2004gl020441
  10. Barthelmie RJ (2007) Wind energy: status and trends. Geogr Compass 1(3):275–301CrossRefGoogle Scholar
  11. Barthelmie RJ, Jensen LE (2010) Evaluation of power losses due to wind turbine wakes at the nysted offshore wind farm. Wind Energy 13:573–586CrossRefGoogle Scholar
  12. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543CrossRefGoogle Scholar
  13. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301. doi: 10.1175/2008jcli2678.1 CrossRefGoogle Scholar
  14. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Kofli B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi: 10.1007/s10584-006-9226-z CrossRefGoogle Scholar
  15. Blanco MI (2009) The economics of wind energy. Renew Sustain Energy Rev 13:1372–1382CrossRefGoogle Scholar
  16. Blechschmidt AM, Bakan S, Grabl H (2009) Large-scale atmospheric circulation patterns during polar low events over the Nordic seas. J Geophys Res 114:D06115. doi: 10.1029/2008JD010865 CrossRefGoogle Scholar
  17. Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129(1):5–25CrossRefGoogle Scholar
  18. Brasseur O, Gallee H, Boyen H, Tricot C (2002) Development and application of a physical approach to estimating wind gusts—reply. Mon Weather Rev 130(7):1936–1942CrossRefGoogle Scholar
  19. Bury KV (1975) Statistical models in applied sciences. John Wiley ad Sons, New YorkGoogle Scholar
  20. Businger S (1991) Arctic hurricanes. Am Sci 79(1):18–33Google Scholar
  21. Chen SR, Cai CS (2004) Accident assessment of vehicles on long-span bridges in windy environments. J Wind Eng Ind Aerodyn 92(12):991–1024. doi: 10.1016/j.jweia.2004.06.002 CrossRefGoogle Scholar
  22. Cheung MMS, Chan BYB (2010) Operational requirements for long-span bridges under strong wind events. J Bridge Eng 15(2):131–143. doi: 10.1061/(asce)be.1943-5592.0000044 CrossRefGoogle Scholar
  23. Choi ECC, Hidayat FA (2002) Gust factors for thunderstorm and non-thunderstorm winds. J Wind Eng Ind Aerodyn 90(12–15):1683–1696CrossRefGoogle Scholar
  24. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model version 5(ß). Danish Meteorological Institute Technical Report 06–17.
  25. Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J Royal Stat Soc Ser C Appl Stat 52:405–416CrossRefGoogle Scholar
  26. Cook NJ (1986) The designer’s guide to wind loading of building structures: part 1: background damage survey wind data and structural classification. Butterworths, LondonGoogle Scholar
  27. Cook NJ (2004) Confidence limits for extreme wind speeds in mixed climates. J Wind Eng Ind Aerodyn 92(1):41–51. doi: 10.1016/j.jweia.2003.09.037 CrossRefGoogle Scholar
  28. Cook NJ, Harris RI, Whiting R (2003) Extreme wind speeds in mixed climates revisited. J Wind Eng Ind Aerodyn 91(3):403–422CrossRefGoogle Scholar
  29. Della-Marta PM, Mathis H, Frei C, Liniger MA, Kleinn J, Appenzeller C (2009) The return period of wind storms over Europe. Int J Climatol 29:437–459CrossRefGoogle Scholar
  30. Déqué M, Rowell DP, Luthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70. doi: 10.1007/s10584-006-9228-x CrossRefGoogle Scholar
  31. Drost F, Renwick J, Bhaskaran B, Oliver H, McGregor J (2007) Simulation of New Zealand’s climate using a high-resolution nested regional climate model. Int J Climatol 27(9):1153–1169. doi: 10.1002/joc.1461 CrossRefGoogle Scholar
  32. Fink AH, Brucher T, Ermert V, Kruger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9(2):405–423CrossRefGoogle Scholar
  33. Frandsen S, Petersen EL (1993) The importance of a good wind year to start on when building a wind farm. In: European Wind Energy Conference 1993, Travemunde, 8–12 March 1993Google Scholar
  34. Gaffney SJ, Robertson AW, Smyth P, Camargo SJ, Ghil M (2007) Probabilistic clustering of extratropical cyclones using regression mixture models. Clim Dyn 29(4):423–440. doi: 10.1007/s00382-007-0235-z CrossRefGoogle Scholar
  35. Giorgi F (2005) Interdecadal variability of regional climate change: implications for the development of regional climate change scenarios. Meteorol Atmos Phys 89(1–4):1–15. doi: 10.1007/s00703-005-0118-y CrossRefGoogle Scholar
  36. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  37. Goyette S (2008) Development of a model-based high-resolution extreme surface wind climatology for Switzerland. Nat Hazards 44(3):329–339. doi: 10.1007/s11069-007-9130-5 CrossRefGoogle Scholar
  38. Goyette S, Brasseur O, Beniston M (2003) Application of a new wind gust parameterization: multiscale case studies performed with the Canadian regional climate model. J Geophys Res 108:D13. doi: 10.1029/2002jd002646 CrossRefGoogle Scholar
  39. Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn 58:199–212CrossRefGoogle Scholar
  40. Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68:813–814Google Scholar
  41. Guedes Soares C, Scotto MG (2004) Application of the r largest-order statistics for long-term predictions of significant wave height. Coast Eng 51:387–394CrossRefGoogle Scholar
  42. Hanafusa T, Lee CB, Lo AK (1986) Dependence of the exponent in power law profiles on stability and height interval. Atmos Environ 20(10):2059–2066CrossRefGoogle Scholar
  43. Hau E (2006) Wind turbines fundamentals technologies application, economics. Birkhäuser, BaselGoogle Scholar
  44. Haugen JE, Iversen T (2008) Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios. Tellus Ser A Dyn Meteorol Oceanogr 60(3):411–426. doi: 10.1111/j.1600-0870.2008.00315.x CrossRefGoogle Scholar
  45. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate projections. Bull Am Meteorol Soc 90(8):1095–1107. doi: 10.1175/2009bams2607.1 CrossRefGoogle Scholar
  46. Hennessey JP (1977) Some aspects of wind power statistics. J Appl Meteorol 16:119–128CrossRefGoogle Scholar
  47. Höglund A, Meier HEM, Broman M, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere model RCA3.0. Oceanografi, vol 97. SMHI, StockholmGoogle Scholar
  48. International energy agency (2008) World energy outlook: 2008. OECD/IEAGoogle Scholar
  49. Kaurola J (1997) Some diagnostics of the Northern wintertime climate simulated by the ECHAM3 model. J Clim 10(2):201–222CrossRefGoogle Scholar
  50. Kite GW (1974) Case study of regional analysis techniques for design flood estimation. Can J Earth Sci 11(6):801–808Google Scholar
  51. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2010) European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus Ser A Dyn Meteorol Oceanogr. doi:  10.1111/j.1600-0870.2010.00475.x
  52. Knote C, Heinemann G, Rockel B (2010) Changes in weather extremes: assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorol Z 19(1):11–23. doi: 10.1127/0941-2948/2010/0424 CrossRefGoogle Scholar
  53. Larsen XG, Mann J (2006) The effects of disjunct sampling and averaging time on maximum mean wind speeds. J Wind Eng Ind Aerodyn 94:581–602CrossRefGoogle Scholar
  54. Leckebusch G, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob Planet Change 44:181–193CrossRefGoogle Scholar
  55. Lionello P, Boldrin U, Giorgi F (2008a) Future changes in cyclone climatology over Europe as inferred from a regional climate distribution. Clim Dyn 30:657–671CrossRefGoogle Scholar
  56. Lionello P, Cogo S, Galati MB, Sanna A (2008b) The Mediterranean surface wave climate inferred from future climate scenarios. Glob Planet Change 63:152–161CrossRefGoogle Scholar
  57. Lombardo FT, Main JA, Simiu E (2009) Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis. J Wind Eng Ind Aerodyn 97(3–4):120–131. doi: 10.1016/j.jweia.2009.03.001 CrossRefGoogle Scholar
  58. Löptien U, Zolina O, Gulev S, Latif M, Soloviov V (2008) Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs. Clim Dyn 31(5):507–532. doi: 10.1007/s00382-007-0355-5 CrossRefGoogle Scholar
  59. Luksch U, Raible CC, Blender R, Fraedrich K (2005) Decadal cyclone variability in the North Atlantic. Meteorol Z 14(6):747–753. doi: 10.1127/0941-2948/2005/0075 CrossRefGoogle Scholar
  60. Mann J, Kristensen L, Jensen NO (1998) Uncertainties of extreme winds, spectra, and coherences. In: Larsen A, Esdahl S (eds) Bridge aerodynamics. Balkerna, Rotterdam, pp 49–56Google Scholar
  61. May W (2008) Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim Dyn 30:581–603. doi: 10.1007/s00382-007-0309-y CrossRefGoogle Scholar
  62. Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull Am Meteorol Soc 81(3):427–436CrossRefGoogle Scholar
  63. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction can it be skillful? Bull Am Meteorol Soc 90(10):1467–1485. doi: 10.1175/2009bams2778.1 CrossRefGoogle Scholar
  64. Minciarelli F, Gioffre M, Grigoriu M, Simiu E (2001) Estimates of extreme wind effects and wind load factors: influence of knowledge uncertainties. Probab Eng Mech 16(4):331–340CrossRefGoogle Scholar
  65. Naess A, Clausen PH (2001) Combination of the peaks-over-threshold and bootstrapping methods for extreme value prediction. Struct Saf 23:315–330CrossRefGoogle Scholar
  66. Naess A, Gaidai O (2009) Estimation of extreme values from sampled time series. Struct Saf 31:325–334CrossRefGoogle Scholar
  67. Nakicenovic N, Swart R (eds) (2000) Emissions scenarios. Cambridge University Press, UKGoogle Scholar
  68. Neufeldt H, Jochem E, Hinkel J, Huitema D, Massey E, Watkiss P, McEvoy D, Rayner T, Hof A, Lonsdale K (2010) Climate policy and inter-linkages between adaptation and mitigation. In: Hulme M, Neufeldt H (eds) Making climate change work for us. Cambridge University Press, Cambridge, p 413Google Scholar
  69. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2010) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus Ser A Dyn Meteorol Oceanogr. doi: 10.1111/j.1600-0870.2010.00466.x
  70. Nilsson C, Stjernquist I, Barring L, Schlyter P, Jonsson A, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. For Ecol Manag 199:165–173CrossRefGoogle Scholar
  71. Nilsson C, Goyette S, Barring L (2007) Relating forest damage data to the wind field from high-resolution RCM simulations: case study of Anatol striking Sweden in December 1999. Glob Planet Change 57(1–2):161–176. doi: 10.1016/j.gloplacha.2006.11.011 CrossRefGoogle Scholar
  72. Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorol Appl 6:119–132CrossRefGoogle Scholar
  73. Payer T, Kuchenhoff H (2004) Modelling extreme wind speeds at a German weather station as basic input for a subsequent risk analysis for high-speed trains. J Wind Eng Ind Aerodyn 92(3–4):241–261. doi: 10.1016/j.jweia.2003.10.006 CrossRefGoogle Scholar
  74. Petersen E, Mortensen L, Landberg L, Højstrup J, Frank H (1998) Wind power meteorology. Part I: climate and turbulence. Wind Energy 1:2–22CrossRefGoogle Scholar
  75. Pimentel D, Herz M, Glickstein M, Zimmerman M, Allen R, Becker K, Evans J, Hussain B, Sarsfeld R, Grosfeld A, Seidel T (2002) Renewable energy: current and potential issues. Bioscience 52(12):1111–1120CrossRefGoogle Scholar
  76. Pinto JG, Frohlich EL, Leckebusch GC, Ulbrich U (2007a) Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Nat Hazards Earth Syst Sci 7(1):165–175CrossRefGoogle Scholar
  77. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007b) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29(2–3):195–210. doi: 10.1007/s00382-007-0230-4 CrossRefGoogle Scholar
  78. Pinto JG, Neuhaus CP, Kruger A, Kerschgens M (2009a) Assessment of the Wind Gust Estimate Method in mesoscale modelling of storm events over West Germany. Meteorol Z 18(5):495–506. doi: 10.1127/0941-2948/2009/0402 CrossRefGoogle Scholar
  79. Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009b) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32(5):711–737. doi: 10.1007/s00382-008-0396-4 CrossRefGoogle Scholar
  80. Pinto JG, Neuhaus CP, Leckebusch GC, Reyers M, Kerschgens M (2010) Estimation of wind storm impacts over Western Germany under future climate conditions using a statistical-dynamical downscaling approach. Tellus Ser A Dyn Meteorol Oceanogr 62A(2):188–201. doi: 10.1111/j.1600-0870.2009.00424.x CrossRefGoogle Scholar
  81. Pryor SC, Barthelmie RJ (2010) Assessing the vulnerability of wind energy to climate change and extreme events. In: Toth F (ed) Extreme weather and the energy sector. International Atomic Energy Authority, Vienna, p 66Google Scholar
  82. Pryor SC, Ledolter J (2010) Addendum to: wind speed trends over the contiguous USA. J Geophys Res 115: D10103. doi: 10.1029/2009JD013281
  83. Pryor SC, Schoof JT (2010) Importance of the SRES in projections of climate change impacts on near-surface wind regimes. Meteorol Z 19(3):267–274CrossRefGoogle Scholar
  84. Pryor SC, Barthelmie RJ, Kjellström E (2005a) Analyses of the potential climate change impact on wind energy resources in northern Europe using output from a regional climate model. Clim Dyn 25:815–835CrossRefGoogle Scholar
  85. Pryor SC, Barthelmie RJ, Schoof JT (2005b) The impact of non-stationarities in the climate system on the definition of ‘a normal wind year’: a case study from the Baltic. Int J Climatol 25:735–752CrossRefGoogle Scholar
  86. Pryor SC, Schoof JT, Barthelmie RJ (2006) Winds of change? Projections of near-surface winds under climate change scenarios. Geophys Res Lett 33:L11702. doi: 10.1029/2006GL026000 CrossRefGoogle Scholar
  87. Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory D, Gutowski WJ, Nunes A, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res 114:D14105. doi: 10.1029/2008jd011416
  88. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Mancini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. vol Meteorol. Report 349. Max-Plank Institute, Hamburg.
  89. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19(16):3771–3791CrossRefGoogle Scholar
  90. Rosbjerg D (1985) Estimation in partial duration series with independent and dependent peak values. J Hydrol 76(1–2):183–195CrossRefGoogle Scholar
  91. Samulesson P, Jones C, Willen U, Gollvik S, Hansson U, Kjellström E, Nikulin G, Ullerstig A, Wyser K (2010) The Rossby Centre regional climate model RCA3: model description and performance. Tellus Ser A Dyn Meteorol Oceanogr. doi:  10.1111/j/1600-0870.2010.00478.x
  92. Schuenemann KC, Cassano JJ (2009) Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J Geophys Res 114:D20113. doi: 10.1029/2009jd011705
  93. Siegismund F, Schrum C (2001) Decadal changes in the wind forcing over the North Sea. Clim Res 18(1–2):39–45CrossRefGoogle Scholar
  94. Sims REH, Schock RN, Adegbululgbe A, Fenhann J, Konstantinaviciute I, Moomaw W, Nimir HB, Schlamadinger B, Torres-Martínez J, Turner C, Uchiyama Y, Vuori SJV, Wamukonya N, Zhang X (2007) Energy supply. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 252–322Google Scholar
  95. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  96. Soomere T, Behrens A, Tuomi L, Nielsen JW (2008) Wave conditions in the Baltic proper and in the Gulf of Finland during windstorm Gudrun. Nat Hazards Earth Syst Sci 8(1):37–46CrossRefGoogle Scholar
  97. Stork CHJ, Butterfield CP, Holley W, Madsen PH, Jensen PH (1998) Wind conditions for wind turbine design proposals for revision of the IEC 1400–1 standard. J Wind Eng Ind Aerodyn 74–76:443–454CrossRefGoogle Scholar
  98. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin S, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  99. Trigo RM, Valente MA, Trigo IF, Miranda PMA, Ramos AM, Paredes D, Garcia-Herrerae R (2008) The impact of North Atlantic Wind and Cyclone Trends on European precipitation and significant wave height in the Atlantic. Trends Dir Clim Res 1146:212–234. doi: 10.1196/annals.1446.014 Google Scholar
  100. Troen I, Petersen EL (1989) European wind atlas. Risø National Laboratory, RoskildeGoogle Scholar
  101. Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manag 135(1–3):155–167CrossRefGoogle Scholar
  102. Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing northern hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21(8):1669–1679. doi: 10.1175/2007jcli1992.1 CrossRefGoogle Scholar
  103. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96(1–2):117–131. doi: :10.1007/s00704-008-0083-8 CrossRefGoogle Scholar
  104. Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA, Jones C, Lenderlink G, McDonald A, McGrath R, Navascues B, Woetman Nielsen N, Ødegaard V, Rodrigues E, Rummukainen M, Rõõm R, Sattler K, Hansen Sass B, Savijärvi H, Wichers Schreur B, Sigg R, The H, Tijm A (2002) HIRLAM-5 scientific documentation. Scientific report.
  105. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  106. Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Buergi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55CrossRefGoogle Scholar
  107. Verkaik JW (2000) Evaluation of two gustiness models for exposure correction calculations. J Appl Meteorol 39(9):1613–1626CrossRefGoogle Scholar
  108. Weisse R, Von Storch H, Feser F (2005) Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J Clim 18:465–479CrossRefGoogle Scholar
  109. Whalen TM, Savage GT, Jeong GD (2004) An evaluation of the self-determined probability-weighted moment method for estimating extreme wind speeds. J Wind Eng Ind Aerodyn 92(3–4):219–239. doi: 10.1016/j.jweia.2003.09.042 CrossRefGoogle Scholar
  110. Wieringa J (1973) Gust factors over open water and built-up country. Boundary Layer Meteorol 3:424–441CrossRefGoogle Scholar
  111. Zahn M, Von Storch H, Bakan S (2008) Climate mode simulation of North Atlantic polar lows in a limited area model. Tellus Ser A Dyn Meteorol Oceanogr 60(4):620–631. doi: 10.1111/j.1600-0870.2008.00330.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. C. Pryor
    • 1
    • 2
    Email author
  • R. J. Barthelmie
    • 1
    • 2
  • N. E. Clausen
    • 2
  • M. Drews
    • 3
  • N. MacKellar
    • 3
  • E. Kjellström
    • 4
  1. 1.Atmospheric Science Program, College of Arts and SciencesIndiana UniversityBloomingtonUSA
  2. 2.Wind Energy DivisionRisø-DTU National Laboratory for Sustainable EnergyRoskildeDenmark
  3. 3.The Danish Climate Centre, DMICopenhagenDenmark
  4. 4.Rossby Centre, SMHINorrköpingSweden

Personalised recommendations