Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries

Abstract

We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901–1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aravena JC, Lara A, Wolodarsky-Franke A, Villalba R, Cuq E (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. Revista Chilena De Historia Natural 75:361–376

    Google Scholar 

  2. Black DE, Abahazi MA, Thunell RC, Kaplan A, Tappa EJ, Peterson LC (2007) An 8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22: PA4204

  3. Boninsegna JA, Keegan J, Jacoby GC, D’Arrigo R, Holmes RL (1989) Dendrochronological studies in Tierra del Fuego, Argentina. Quat South Am 7:315–326

    Google Scholar 

  4. Boninsegna JA et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

    Article  Google Scholar 

  5. Bradley RS, Hughes MK, Diaz HF (2003) Climate in Medieval time. Science 302:404–405

    Article  Google Scholar 

  6. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene 12:737–757

    Article  Google Scholar 

  7. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos. 111: 21 p

  8. Busalacchi AJ (2004) The role of the Southern Ocean in global processes: an earth system science approach. Antarct Sci 16:363–368

    Article  Google Scholar 

  9. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402

    Article  Google Scholar 

  10. Cook ER, Palmer JG, D’Arrigo RD (2002) Evidence for a ‘Medieval Warm Period’ in a 1, 100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29:1667

    Article  Google Scholar 

  11. Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018

    Article  Google Scholar 

  12. D’Arrigo R et al (2006) Monsoon drought over Java, Indonesia, during the past two centuries. Geophys Res Lett 33:L04709

    Article  Google Scholar 

  13. Dettinger MD, Battisti DS, Garreaud RD, McCabe GJ, Bitz CM (2001) Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. In: Markgraf V (ed) Interhemispheric climate linkages. Cambridge University Press, Cambridge, pp 1–16

    Google Scholar 

  14. Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea-surface temperature since 1600-AD—the delta-O-18 record of climate variability in Galapagos corals. Paleoceanography 9:291–315

    Article  Google Scholar 

  15. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711

    Article  Google Scholar 

  16. Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709

    Article  Google Scholar 

  17. García-Herrera R, Konnen GP, Wheeler DA, Prieto MR, Jones PD, Koek FB (2005) CLIWOC: A climatological database for the world’s oceans 1750–1854. Clim Change 73:1–12

    Article  Google Scholar 

  18. García-Herrera R et al (2008) A chronology of El Niño events from primary documentary sources in northern Peru. J Clim 21:1948–1962

    Article  Google Scholar 

  19. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123

    Article  Google Scholar 

  20. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  21. Jansen E et al (2007) Palaeoclimate, in Climate Change 2007: the physical science basis. In: Solomon S et al (ed) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA

  22. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8:455–471

    Article  Google Scholar 

  23. Jones PD et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49

    Article  Google Scholar 

  24. Koch J, Kilian R (2005) ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile. Holocene 15:20–28

    Article  Google Scholar 

  25. Kuhnert H et al (1999) A 200-year coral stable oxygen isotope record from a high-latitude reef off western Australia. Coral Reefs 18:1–12

    Article  Google Scholar 

  26. Küttel M, Luterbacher J, Zorita E, Xoplaki E, Riedwyl N, Wanner H (2007) Testing a European winter surface temperature reconstruction in a surrogate climate. Geophys Res Lett 34:L07710

    Article  Google Scholar 

  27. Küttel M et al (2009) The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Clim Dyn. doi:10.1007/s00382-00009-00577-00389

  28. Lamarche VC, Holmes RL, Dunwiddie PW, Drew LG (1979) Tree-ring chronologies of the southern hemisphere: vol 1: Argentina. Chronology Series V, Laboratory of Tree-Ring Research. University of Arizona, Tucson

    Google Scholar 

  29. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya-Cupressoides tree rings in Southern South-America. Science 260:1104–1106

    Article  Google Scholar 

  30. Lara A, Aravena JC, Villalba R, Wolodarsky-Franke A, Luckman B, Wilson R (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile. Can J Forest Res 31:925–936

    Google Scholar 

  31. Lara A, Villalba R, Wolodarsky-Franke A, Aravena JC, Luckman BH, Cuq E (2005) Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 degrees 40 ‘-55 degrees S) in the Chilean Andes. J Biogeogr 32:879–893

    Article  Google Scholar 

  32. Lara A, Villalba R, Urrutia R (2008) A 400-year tree-ring record of the Puelo River summer-fall streamflow in the Valdivian Rainforest eco-region, Chile. Clim Change 86:331–356

    Article  Google Scholar 

  33. Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science 290:1145–1148

    Article  Google Scholar 

  34. Ljungqvist FC (2009) Temperature Proxy Records covering the last two Millennia: a tabular and visual Overview. Geografiska Annaler: Ser A, Phys Geogr 91:11–29

    Article  Google Scholar 

  35. Luckman B, Villalba R (2001) Assessing the synchronicity of glacier fluctuations in the western Cordillera of the Americas during the last millennium. In: Markgraf V (ed) Inter-hemispheric climate linkages. Academic Press, San Diego, pp 119–140

    Google Scholar 

  36. Luterbacher J et al (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Google Scholar 

  37. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  38. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704

    Article  Google Scholar 

  39. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820

    Article  Google Scholar 

  40. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  41. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112:D12109

    Article  Google Scholar 

  42. Mann ME, Zhang ZH, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni FB (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  Google Scholar 

  43. Mann ME et al (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Article  Google Scholar 

  44. Masiokas MH, Luckman BH, Villalba R, Delgado S, Skvarca P, Ripalta A (2009) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281:351–362

    Article  Google Scholar 

  45. McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730

    Article  Google Scholar 

  46. Meyer I, Wagner S (2008a) The Little Ice Age in southern South America: proxy and model based evidence. In: Vimeux F et al (eds) Past climate variability in South America and surrounding regions from the last glacial maximum to the Holocene, pp 395–412. doi:10.1007/978-90-481-2672-9

  47. Meyer I, Wagner S (2008b) The Little Ice Age in southern Patagonia-comparison between paleo-ecological reconstructions and downscaled model output of a GCM simulation. PAGES News 16(2):12–13

    Google Scholar 

  48. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  49. Morales MS, Villalba R, Grau HR, Paolini L (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080–3089

    Article  Google Scholar 

  50. Neukom R et al (2009) An extended network of documentary data from South America and its potential for quantitative precipitation reconstructions back to the 16th century. Geophys Res Lett 36:L12703

    Article  Google Scholar 

  51. Neukom R et al (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett (revised)

  52. Newman L, Wanner H, Kiefer T (2009) Towards a global synthesis of the climate of the last two millennia. PAGES news 17:130–131

    Google Scholar 

  53. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78:2837–2849

    Article  Google Scholar 

  54. Prieto MDR, García Herrera R (2009) Documentary sources from South America: Potential for climate reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 281:196–209

    Article  Google Scholar 

  55. Prieto MR, Herrera R, Castrillejo T, Dussel P (2001a) Variaciones climáticas recientes y disponibilidad hídrica en los Andes Centrales Argentino–Chilenos (1885–1996). El uso de datos periodísticos para la reconstitución del clima. Meteorológica 25:27–43

    Google Scholar 

  56. Prieto MR, Herrera R, Dussel P, Gimeno L, Ribera P, Garcia R, Hernandez E (2001b) Interannual oscillations and trend of snow occurrence in the Andes region since 1885. Aust Meteorol Mag 50:164–168

    Google Scholar 

  57. Quinn WH, Neal VT (1992) The historical record of El Niño events. In: Bradley R, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 623–648

    Google Scholar 

  58. Rabatel A, Francou B, Jomelli V, Naveau P, Grancher D (2008) A chronology of the Little Ice Age in the tropical Andes of Bolivia (16 degrees S) and its implications for climate reconstruction. Quat Res 70:198–212

    Article  Google Scholar 

  59. Riedwyl N, Luterbacher J, Wanner H (2008) An ensemble of European summer, winter temperature reconstructions back to 1500. Geophys Res Lett 35:L20707

    Article  Google Scholar 

  60. Riedwyl N, Küttel M, Luterbacher J, Wanner H (2009) Comparison of climate field reconstruction techniques: application to Europe. Clim Dyn 32:381–395

    Article  Google Scholar 

  61. Röthlisberger F (1986) 10000 Jahre Gletschergeschichte der Erde, Verlag Sauerländer, Aarau

  62. Rutherford S, Mann ME, Osborn TJ, Bradley RS, Briffa KR, Hughes MK, Jones PD (2005) Proxy-based Northern Hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season, and target domain. J Clim 18:2308–2329

    Article  Google Scholar 

  63. Schaefer JM et al (2009) High-frequency holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324:622–625

    Article  Google Scholar 

  64. Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199

    Article  Google Scholar 

  65. Schmelter A (2000) Climatic response and growth-trends of Nothofagus pumilio along altitudinal gradients from arid to humid sites in northern Patagonia—a progress report. In: Roig F (ed) Dendrochronología en América Latina. Editorial Nacional de Cuyo, Mendoza, pp 193–215

    Google Scholar 

  66. Schneider T (2001) Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–871

    Article  Google Scholar 

  67. Solíz C, Villalba R, Argollo J, Morales MS, Christie DA, Moya J, Pacajes J (2009) Spatio-temporal variations in Polylepis tarapacana radial growth across the Bolivian Altiplano during the 20th century. Palaeogeogr Palaeoclimatol Palaeoecol 281:296–308

    Article  Google Scholar 

  68. Srur AM, Villalba R, Villagra PE, Hertel D (2008) Influences of climatic and CO2 concentration changes on radial growth of Nothofagus pumilio in Patagonia. Revista Chilena De Historia Natural 81:239–256

    Article  Google Scholar 

  69. Stahle DW et al (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79:2137–2152

    Article  Google Scholar 

  70. Stenni B, Proposito M, Gragnani R, Flora O, Jouzel J, Falourd S, Frezzotti M (2002) Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J Geophys Res 107:4076

    Article  Google Scholar 

  71. Stine S (1994) Extreme and persistent drought in California and Patagonia during medieval time. Nature 369:546–549

    Article  Google Scholar 

  72. Szeicz JM, Lara A, Díaz S, Aravena JC (2000) Dendrochronological studies of Pilgerodendron uviferum in southern South America. In: Roig F (ed) Dendrochronología en América Latina. Editorial Nacional de Cuyo, Mendoza, pp 245–270

    Google Scholar 

  73. Taulis E (1934) De la distribution des pluies au Chili. Materiaux pour l’étude des calamités 33:3–20

    Google Scholar 

  74. Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. J Quat Sci 15:377–394

    Article  Google Scholar 

  75. Thompson LG et al (2006) Abrupt tropical climate change: Past and present. Proc Natl Acad Sci USA 103:10536–10543

    Article  Google Scholar 

  76. Van Ommen T. D., Morgan V., Curran M. A. J. (2004), Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica, in Annals of Glaciology, vol 39, 2005, edited, Int Glaciological Soc, Cambridge, pp 359–365

  77. Vargas WM, Naumann G (2008) Impacts of climatic change and low frequency variability in reference series on daily maximum and minimum temperature in southern South America. Reg Environ Chang 8:45–57

    Article  Google Scholar 

  78. Villalba R (1990) Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34:346–360

    Article  Google Scholar 

  79. Villalba R (1994) Tree-ring and glacial evidence for the medieval warm epoch and the little ice-age in southern South-America. Clim Change 26:183–197

    Article  Google Scholar 

  80. Villalba R, Leiva JC, Rubulls S, Suarez J, Lenzano L (1990) Climate, tree-ring, and glacial fluctuations in the Rio Frias Valley, Rio-Negro, Argentina. Arct Alp Res 22:215–232

    Article  Google Scholar 

  81. Villalba R, Holmes RL, Boninsegna JA (1992) Spatial patterns of climate and tree growth variations in subtropical Northwestern Argentina. J Biogeogr 19:631–649

    Article  Google Scholar 

  82. Villalba R, Boninsegna JA, Veblen TT, Schmelter A, Rubulis S (1997a) Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. Clim Change 36:425–454

    Article  Google Scholar 

  83. Villalba R, Cook ER, Darrigo RD, Jacoby GC, Jones PD, Salinger MJ, Palmer J (1997b) Sea-level pressure variability around Antarctica since AD 1750 inferred from subantarctic tree-ring records. Clim Dyn 13:375–390

    Article  Google Scholar 

  84. Villalba R et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232

    Article  Google Scholar 

  85. Villalba R, Grosjean M, Kiefer T (2009) Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 281:175–179

    Article  Google Scholar 

  86. Vimeux F, Ginot P, Schwikowski M, Vuille M, Hoffmann G, Thompson LG, Schotterer U (2009) Climate variability during the last 1000 years inferred from Andean ice cores: a review of methodology and recent results. Palaeogeogr Palaeoclimatol Palaeoecol 281:229–241

    Article  Google Scholar 

  87. von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, Central Chile, back to AD 850. Holocene 19:873–881

    Article  Google Scholar 

  88. von Storch H, Zorita E, Jones JM, Dimitriev Y, Gonzalez-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Article  Google Scholar 

  89. von Storch H, Zorita E, Gonzalez-Rouco F (2009) Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation. Int J Earth Sci 98:67–82

    Article  Google Scholar 

  90. Wanner H et al (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  91. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713

    Article  Google Scholar 

Download references

Acknowledgments

RN is supported by the by the Swiss NSF through the NCCR Climate. JL acknowledges support from the EU/FP7 project ACQWA (grant 212250). We thank the Servicio Meteorologico Nacional de Argentina and Gustavo Naumann for kindly providing the station data. We also thank Jan Esper and Ulf Büntgen for support in the development of the tree ring chronologies. Many thanks go to all contributors of proxy data and to PAGES for supporting the initiative LOTRED South America. The reviewers made useful comments and suggestions and helped to improve the quality of this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Neukom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1674 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neukom, R., Luterbacher, J., Villalba, R. et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37, 35–51 (2011). https://doi.org/10.1007/s00382-010-0793-3

Download citation

Keywords

  • Climate change
  • Climate field reconstructions
  • Temperature
  • South America