Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419:224–232. doi:10.1038/nature01092
Article
Google Scholar
Andrews T (2009) Forcing and response in simulated 20th and 21st century surface energy and precipitation trends. J Geophys Res 114:D17110. doi:10.1029/2009JD011749
Article
Google Scholar
Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Climate 22:2557–2570. doi:10.1175/2008JCLI2759.1
Article
Google Scholar
Bala G, Caldeira K, Miran A, Wickett M, Delire C, Phillips TJ (2006) Biogeophysical effects of CO2 fertilization on global climate. Tellus 58B:620–627. doi:10.1111/j.1600-0889.2006.00210.x
Google Scholar
Bala G, Caldeira K, Nemani R (2009) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn. doi:10.1007/s00382-009-0583-y
Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799
Article
Google Scholar
Betts RA, Boucher O, Collins M, Cox PM, Fallon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1042. doi:10.1038/nature06045
Article
Google Scholar
Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32:237–249. doi:10.1007/s00382-008-0459-6
Article
Google Scholar
Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2009) Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0). Geophys Res Lett 36:L10402. doi:10.1029/2009GL037724
Article
Google Scholar
Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203
Article
Google Scholar
Dong B, Gregory JM, Sutton RT (2009) Understanding land-sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J Climate 22:3079–3097. doi:10.1175/2009JCLI2652.1
Article
Google Scholar
Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703. doi:10.1029/2008GL036273
Article
Google Scholar
Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225
Article
Google Scholar
Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate change 2007: the physical science basis contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 131–234
Google Scholar
Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi:10.1038/nature04504
Article
Google Scholar
Gregory JM, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21:58–71
Article
Google Scholar
Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747
Article
Google Scholar
Joshi M, Gregory J (2008) Dependence of the land-sea contrast in surface climate response on the nature of the forcing. Geophys Res Lett 35:L24802. doi:10.1029/2008GL036234
Article
Google Scholar
Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465. doi:10.1007/s00382-007-0306-1
Article
Google Scholar
Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S, Royer J-F (2002) Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: Conflicting stomatal conductance and LAI responses. J Geophys Res 107(D24):4808. doi:10.1029/2001JD001245
Article
Google Scholar
Lambert FH, Webb MJ (2008) Dependence of global mean precipitation on surface temperature. Geophys Res Lett 35:L16706. doi:10.1029/2008GL034838
Article
Google Scholar
O’Ishi R, Abe-Ouchi A, Prentice IC, Sitch S (2009) Vegetation dynamics and plant CO2 responses as positive feedbacks in a greenhouse world. Geophys Res Lett 36:L11306. doi:10.1029/2009GL038217
Article
Google Scholar
Randall DA et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) Climate change 2007: the physical science basis contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 591–662
Google Scholar
Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen TG (1996) Comparison of radiative and physiological effect of doubled atmospheric CO2 on climate. Science 271:1402–1406. doi:10.1126/science.271.5254.1402
Article
Google Scholar
Williams KD, Ingram WJ, Gregory JM (2008) Time variation of effective climate sensitivity in GCMs. J Clim 21:5076–5090. doi:10.1175/2008JCLI2371.1
Article
Google Scholar
Yang F, Kumar A, Schlesinger ME, Wang W (2003) Intensity of hydrological cycles in warmer climates. J Clim 16:2419–2423
Article
Google Scholar