Skip to main content

Advertisement

Log in

Observed changes in pan-arctic cold-season minimum monthly river discharge

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent changes in pan-arctic land-surface hydrology may significantly affect ecosystems and the built environment. While spatial and temporal patterns in land-surface hydrology trends can be identified using in situ observations of river discharge, the existing studies of cold-season river discharge are often inconsistent and incomparable because they use different methodologies, time periods and geographic regions. By using a comprehensive dataset of river discharge and a trend analysis applying one algorithm over a range of temporal and spatial scales, a synthesis of pan-arctic cold-season low-flow was performed. Cold-season low-flow is increasing over most of the pan-arctic, with decreasing flow in eastern North America and unchanged flow in small basins in the late twentieth century in eastern Eurasia as the main exceptions. This study provides the first synthesis of spatially distributed cold-season low-flow trends in the pan-arctic and indicates that widespread changes in pan-arctic subsurface hydrology are occurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment: scientific report. Cambridge University Press, Cambridge

  • Adam JC et al (2007) Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob’ rivers. J Geophys Res 112(D24):D24114. doi:10.1029/2007JD008525

    Article  Google Scholar 

  • Aziz OIA, Burn DH (2006) Trends and variability in the hydrological regime of the Mackenzie River Basin. J Hydrol 319(1–4):282–294

    Google Scholar 

  • Brabets TP, Walvoord MA (2009) Trends in streamflow in the Yukon River basin from 1944 to 2005 and the influence of the Pacific Decadal Oscillation. J Hydrol 371:108–119

    Article  Google Scholar 

  • Bradley RS et al (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31(16):L16210. doi:10.1029/2004GL020229

    Article  Google Scholar 

  • Bring A (2007) Pan-Arctic drainage basin monitoring, Master thesis in physical geography, N-74, Stockholm University, Stockholm, 44 pp

  • Burn DH, Elnur MAH (2002) Detection of hydrologic trends and variability. J Hydrol 255(1–4):107–122

    Article  Google Scholar 

  • Callaghan TV et al (2005) Arctic Tundra and Polar Desert ecosystems. In: Arctic climate impact assessment (ACIA), edited by ACIA. Cambridge University Press, Cambridge, pp 183–242

  • Christensen JH et al (2007) Regional climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contributions of Working Group I to the Fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  • Déry SJ, Wood EF (2004) Teleconnection between the Arctic Oscillation and Hudson Bay river discharge. Geophys Res Lett 31:L18205. doi:10.1029/2004GL020729

    Article  Google Scholar 

  • Déry SJ, Wood EF (2005) Decreasing river discharge in northern Canada. Geophys Res Lett 32(10):L10401. doi:10.1029/2005GL022845

    Article  Google Scholar 

  • Déry SJ et al (2005) Characteristics and trends of river discharge into Hudson, James, and Ungava Bays, 1964–2000. J Clim 18(14):2540–2557

    Article  Google Scholar 

  • Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science 266(5186):753–762

    Article  Google Scholar 

  • Frauenfeld OW et al (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res Atmos 109(D5):D05101. doi:10.1029/2003JD004245

    Article  Google Scholar 

  • Gibson JJ et al (2006) Hydroclimatic controls on water balance and water level variability in Great Slave Lake. Hydrol Process 20(19):4155–4172

    Article  Google Scholar 

  • Grabs WE et al (2000) Discharge observation networks in Arctic regions: computation of the river runoff into the Arctic Ocean, its seasonality and variability. In: Lewis et al (eds) Freshwater budget of the Arctic Ocean. Kluwer, Dordrecht, pp 249–267

  • Grippa M et al (2007) Observations of changes in surface water over the western Siberian lowland. Geophys Res Lett 34:L15403. doi:10.1029/2007GL030165

    Article  Google Scholar 

  • Groisman PY et al (2007) Potential forest fire danger over Northern Eurasia: changes during the 20th century. Glob Planet Change 56(3–4):371–386

    Article  Google Scholar 

  • Halsey LA et al (1995) Disequilibrium response of permafrost in boreal continental Western Canada to climate-change. Clim Change 30(1):57–73

    Article  Google Scholar 

  • Hinzman LD et al (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72(3):251–298

    Article  Google Scholar 

  • Hirsch RM et al (1992) Statistical analysis of hydrological data. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York

    Google Scholar 

  • Jorgenson MT et al (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48(4):551–579

    Article  Google Scholar 

  • Jorgenson MT et al (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33(2):L02503. doi:10.1029/2005GL024960

    Article  Google Scholar 

  • Lammers RB et al (2001) Assessment of contemporary Arctic river runoff based on observational discharge records. J Geophys Res Atmos 106(D4):3321–3334

    Article  Google Scholar 

  • Lemke P et al (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contributions of Working Group I to the Fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  • Lettenmaier DP et al (1994) Hydro-climatological trends in the continental United-States, 1948–88. J Clim 7(4):586–607

    Article  Google Scholar 

  • Likens GE et al (1978) Recovery of a deforested ecosystem. Science 199(4328):492–496

    Article  Google Scholar 

  • McClelland JW et al (2004) Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res Atmos 109(D18):D18102. doi:10.1029/2004JD004583

    Article  Google Scholar 

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contributions of Working Group I to the Fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 747–845

  • McClelland JW et al (2006) A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys Res Lett 33(6):L06715. doi:10.1029/2006GL025753

    Article  Google Scholar 

  • McCuen RH (2003) Modeling hydrologic change: statistical methods. Lewis Publishers/CRC Press LLC, Boca Raton, p 433

    Google Scholar 

  • Meshcherskaya AV, Blazhevich VG (1997) The drought and excessive moisture indices in a historical perspective in the principal grain-producing regions of the former Soviet Union. J Clim 10(10):2670–2682

    Article  Google Scholar 

  • Nelson FE et al (2001) Subsidence risk from thawing permafrost: the threat to man-made structures across regions in the far north can be monitored. Nature 410(6831):889–890

    Article  Google Scholar 

  • Osterkamp TE et al (2000) Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res 32(3):303–315

    Article  Google Scholar 

  • Peterson BJ et al (2002) Increasing river discharge to the Arctic Ocean. Science 298(5601):2171–2173

    Article  Google Scholar 

  • Pozdnyakov DV et al (2007) Satellite evidence of ecosystem changes in the White Sea: a semi-enclosed arctic marginal shelf sea. Geophys Res Lett 34:L08604. doi:10.1029/2006GL028947

    Article  Google Scholar 

  • Prowse TD et al (2006) Climate change effects on hydroecology of Arctic freshwater ecosystems. Ambio 35(7):347–358

    Article  Google Scholar 

  • Rawlins MA et al (2009) Divergence in seasonal hydrology across northern Eurasia: emerging trends and water cycle linkages. J Geophys Res 114:D18119. doi:10.1029/2009JD011747

    Article  Google Scholar 

  • Rood SB et al (2005) Twentieth-century decline in streamflows from the hydrographic apex of North America. J Hydrol 306(1–4):215–233

    Article  Google Scholar 

  • Serreze M, Barry R (2005) The Arctic climate system. Cambridge University Press, Cambridge, p 385

    Book  Google Scholar 

  • Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46(1–2):159–207

    Article  Google Scholar 

  • Serreze MC et al (2003) Large-scale hydro-climatology of the terrestrial Arctic drainage system. J Geophys Res Atmos 108(D2):D28160. doi:10.1029/2001JD000919

  • Shiklomanov IA, Shiklomanov AI (2003) Climatic change and the dynamics of river runoff into the Arctic Ocean. Water Resour 30(6):593–601

    Article  Google Scholar 

  • Shiklomanov AI et al (2006) Cold region river discharge uncertainty: estimates from large Russian rivers. J Hydrol 326(1–4):231–256

    Article  Google Scholar 

  • Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240(3–4):147–186

    Article  Google Scholar 

  • Smith LC, Alsdorf DE (1998) Control on sediment and organic carbon delivery to the Arctic Ocean revealed with spaceborne synthetic aperture radar: Ob’ River, Siberia. Geology 26(5):395–398

    Article  Google Scholar 

  • Smith NV et al (2004) Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J Geophys Res Atmos 109(D12):D12101. doi:10.1029/2003JD004472

    Article  Google Scholar 

  • Smith LC et al (2005) Disappearing Arctic lakes. Science 308(5727):1429–1429

    Article  Google Scholar 

  • Smith LC et al (2007) Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res 112:G04S47. doi:10.1029/2006JG000327

  • Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104(30):12397–19395

    Article  Google Scholar 

  • St. Jacques JM, Sauchyn DJ (2009) Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys Res Lett 36:L01401. doi:10.1029/2008GL035822

    Article  Google Scholar 

  • Vorosmarty CJ et al (1997) The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26(4):210–219

    Google Scholar 

  • Vorosmarty CJ et al (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Change 39(1–2):169–190

    Article  Google Scholar 

  • Walsh JE et al (2005) Cryosphere and hydrology. In: Arctic Climate Impact Assessment (ACIA), edited by ACIA, Cambridge University Press, Cambridge, pp 183–242

  • Wrona FJ et al (2005) Freshwater ecosystems and fisheries. In: Arctic climate impact assessment (ACIA), edited by ACIA. Cambridge University Press, Cambridge, pp 183–242

  • Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34(12):L12402. doi:10.1029/2007GL030216

    Article  Google Scholar 

  • Water Survey of Canada (2001) HYDAT CD-ROM, user manual, Environment Canada

  • Water Survey of Canada (accessed 2007) Archived hydrometric database (HYDAT). edited by Water Survey of Canada. http://www.wsc.ec.gc.ca

  • Whitfield PH (2001) Linked hydrologic and climate variations in British Columbia and Yukon. Environ Monit Assess 67(1–2):217–238

    Article  Google Scholar 

  • Williams PJ, Smith MW (1989) The frozen Earth: fundamentals of geocryology. Cambridge University Press, Cambridge, p 306

    Book  Google Scholar 

  • Yang DQ et al (2002) Siberian Lena River hydrologic regime and recent change. J Geophys Res Atmos 107(D23):4694. doi:10.1029/2002JD002542

    Article  Google Scholar 

  • Yang DQ et al (2004a) Streamflow changes over Siberian Yenisei River Basin. J Hydrol 296(1–4):59–80

    Article  Google Scholar 

  • Yang DQ et al (2004b) Discharge characteristics and changes over the Ob River watershed in Siberia. J Hydrometeorol 5(4):595–610

    Article  Google Scholar 

  • Ye BS et al (2003) Changes in Lena River streamflow hydrology: human impacts versus natural variations. Water Resour Res 39(7):1200. doi:10.1029/2003WR001991

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac Process 14(2):151–160

    Article  Google Scholar 

  • Zhang TJ (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43(4):RG4002. doi:10.1029/2004RG000157

    Article  Google Scholar 

  • Zhang XB et al (2001) Trends in Canadian streamflow. Water Resour Res 37(4):987–998

    Article  Google Scholar 

  • Zhang TJ et al (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res Atmos 110(D16):D16101. doi:10.1029/2004JD005642

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephen Déry, Katherine Meierdierks and Judith Swan for valuable feedback on the manuscript. This work was made possible by the support of NSF Grant NSF 0629471, NSF Grant OPP02-30211, and NASA Grant NNG06GE62G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asa K. Rennermalm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennermalm, A.K., Wood, E.F. & Troy, T.J. Observed changes in pan-arctic cold-season minimum monthly river discharge. Clim Dyn 35, 923–939 (2010). https://doi.org/10.1007/s00382-009-0730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0730-5

Keywords

Navigation