Climate Dynamics

, Volume 35, Issue 7–8, pp 1361–1371 | Cite as

Sea ice induced changes in ocean circulation during the Eemian

  • Andreas Born
  • Kerim H. Nisancioglu
  • Pascale Braconnot
Article

Abstract

We argue that Arctic sea ice played an important role during early stages of the last glacial inception. Two simulations of the Institut Pierre Simon Laplace coupled model 4 are analyzed, one for the time of maximum high latitude summer insolation during the last interglacial, the Eemian, and a second one for the subsequent summer insolation minimum, at the last glacial inception. During the inception, increased Arctic freshwater export by sea ice shuts down Labrador Sea convection and weakens overturning circulation and oceanic heat transport by 27 and 15%, respectively. A positive feedback of the Atlantic subpolar gyre enhances the initial freshening by sea ice. The reorganization of the subpolar surface circulation, however, makes the Atlantic inflow more saline and thereby maintains deep convection in the Nordic Seas. These results highlight the importance of an accurate representation of dynamic sea ice for the study of past and future climate changes.

Keywords

Sea ice Ocean circulation Eemian Glacial inception Subpolar gyre North Atlantic 

References

  1. Adkins JF, Boyle EA, Keigwin LD, Cortijo E (1997) Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature 390:154–156CrossRefGoogle Scholar
  2. Arzel O, Fichefet T, Goosse H, Dufresne J-L (2008) Causes and impacts of changes in the Arctic freshwater budget during the twentieth and twenty-first centuries in an AOGCM. Clim Dyn 30:37–58CrossRefGoogle Scholar
  3. Beckmann A (1998) The representation of bottom boundary layer processes in numerical ocean circulation models. In: Chassignet EP and Verron J (eds) Ocean modeling and parametrization. Kluwer, Dordrecht, pp 135–154Google Scholar
  4. Berger A (1978) Long-term variations of caloric solar radiation resulting from the Earth’s orbital elements. Quat Res 9:139–167CrossRefGoogle Scholar
  5. Born A, Levermann A, Mignot J (2009) Sensitivity of the Atlantic ocean circulation to a hydraulic overflow parameterisation in a coarse resolution model: response of the subpolar gyre. Ocean Model 27(3–4):130–142CrossRefGoogle Scholar
  6. Braconnot P, Marzin C, Grégoire L, Mosquet E, Marti O (2008) Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim Past 4:281–294CrossRefGoogle Scholar
  7. Bryden HL, Imawaki S (2001). Ocean heat transport. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate: observing and modelling the global ocean. Acdemic Press, San Diego, pp 455–474CrossRefGoogle Scholar
  8. Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24:563–576CrossRefGoogle Scholar
  9. Cortijo E, Duplessy JC, Labeyrie L, Leclaire H, Duprat J, van Weering TCE (1994) Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372:446–449CrossRefGoogle Scholar
  10. Curry R, Mauritzen C (2005). Dilution of the northern North Atlantic ocean in recent decades. Science 308:1772–1774CrossRefGoogle Scholar
  11. de Noblet N, Prentice I, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere-biosphere interactions in triggering the last glaciation. Geophys Res Lett 23:3191–3194CrossRefGoogle Scholar
  12. de Vernal A, Hillaire-Marcel C (2008) Nature variability of greenland climate vegetation, and ice volume during the past million years. Science 320:1622–1625CrossRefGoogle Scholar
  13. Divine DV, Dick C (2006) Historic variability of sea ice edge position in the Nordic Seas. J Geophys Res 111:C01001CrossRefGoogle Scholar
  14. Evans HK, Hall IR, Bianchi GG, Oppo DW (2007) Intermediate water links to deep Western boundary current variability in the subtropical NW Atlantic during marine isotope stages 5 and 4. Paleoceanography 22:PA3209CrossRefGoogle Scholar
  15. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609CrossRefGoogle Scholar
  16. Fichefet T, Maqueda MAM (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268CrossRefGoogle Scholar
  17. Fronval T, Jansen E, Haflidason H, Sejrup JP (1998) Variability in surface and deep water conditions in the Nordic seas during the last interglacial period. Quat Sci Rev 17:963–985CrossRefGoogle Scholar
  18. Govin A, Michel E, Labeyrie L, Waelbroeck C, Dewilde F, Jansen E (2009) Evidence for northward expansion of Antarctic Bottom Water mass in the Southern Ocean during the last glacial inception. Paleoceanography 24:PA1202. doi:10.1029/2008PA001603
  19. Gröger M, Maier-Reimer E, Mikolajewicz U, Schurgers G, Vizcaíno M, Winguth A (2007) Changes in the hydrological cycle, ocean circulation, and carbon/nutrient cycling during the last interglacial and glacial transition. Paleoceanography 22:PA4205CrossRefGoogle Scholar
  20. Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559CrossRefGoogle Scholar
  21. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844CrossRefGoogle Scholar
  22. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  23. Hillaire-Marcel C, de Vernal A, Bilodeau A, Weaver AJ (2001) Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature 410:1073–1077CrossRefGoogle Scholar
  24. Holland MM, Finnis J, Serrenze MC (2006) Simulated Arctic Ocean freshwater budgets in the twentieth and twenty-first centuries. J Clim 19:6221–6242CrossRefGoogle Scholar
  25. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J, Fairhead L, Filiberti M, Friedlingstein P, Grandpeix J, Krinner G, Levan P, Li Z, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813CrossRefGoogle Scholar
  26. IPCC (2007) Climate Change 2007: The Physical Science Basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  27. Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410:570–574CrossRefGoogle Scholar
  28. Khodri M, Ramstein G, Paillard D, Duplessy C, Kageyama M, Ganopolski A (2003) Modelling the climate evolution from the last interglacial to the start of the last glaciation: the role of arctic ocean freshwater budget. Geophys Res Lett 30(12):1606CrossRefGoogle Scholar
  29. Krinner G, Viovy N, de Noblet-Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles 19(1):GB1015CrossRefGoogle Scholar
  30. Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse-resolution model. Geophys Res Lett 34:L24605CrossRefGoogle Scholar
  31. Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional Paper, vol 13. US Department of Commerce, Washington, DCGoogle Scholar
  32. Madec G, Delecluse P, Imbard M, Lévy C (1997) OPA version 8.1 Ocean General Circulation Model reference manual. Institut Pierre-Simon Laplace, Note du Pôle de modélisation no. 11Google Scholar
  33. Marti O, Braconnot P, Dufresne J-L, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Goosse H, Grandpeix J-Y, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2009) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34(1):1–26. doi:10.1007/s00382-009-0640-6
  34. Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth system model. Clim Dyn 21:515–537CrossRefGoogle Scholar
  35. Molyneux EG, Hall IR, Zahn R, Diz P (2007) Deep water variability on the southern Agulhas Plateau: interhemispheric links over the past 170 ka. Paleoceanography 22:PA4209CrossRefGoogle Scholar
  36. Müller UC, Kukla GJ (2004) North Atlantic Current and European environments during the declining stage of the last interglacial. Geology 32:1009–1012CrossRefGoogle Scholar
  37. Oppo DW, Lehman SJ (1995) Suborbital timescale variability of North Atlantic deep water during the past 200,000 years. Paleoceanography 10(5):901–910CrossRefGoogle Scholar
  38. Otterå OH, Drange H (2004). Effects of solar irradiance forcing on the ocean circulation and sea-ice in the North Atlantic in an isopycnic coordinate ocean general circulation model. Tellus 56A:154–166Google Scholar
  39. Otto-Bliesner BL, Brady E, Clauzet G, Tomas R, Levis S, Kothavala Z (2006a) Last glacial maximum and holocene climate in CCSM3. J Clim 19:2526–2544CrossRefGoogle Scholar
  40. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A, CAPE Last Interglacial Project members (2006b) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753CrossRefGoogle Scholar
  41. Rasmussen TL, Oppo DW, Lehman ETSJ (2003). Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18(1):1018CrossRefGoogle Scholar
  42. Roullet G, Madec G (2000). Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105:23927–23942CrossRefGoogle Scholar
  43. Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317CrossRefGoogle Scholar
  44. Smedsrud LH, Sorteberg A, Kloster K (2008) Recent and future changes of the arctic sea-ice cover. Geophys Res Lett 35:L20503CrossRefGoogle Scholar
  45. Spall MA (2004) Boundary currents and watermass transformation in marginal seas. J Phys Oceanogr 34:1197–1213CrossRefGoogle Scholar
  46. Straneo F (2006) On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J Phys Oceanogr 36:1822–1840CrossRefGoogle Scholar
  47. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007a) Quantifying the AMOC feedbacks during a 2 × CO2 stabilization experiment with land-ice melting. Clim Dyn 29:521–534CrossRefGoogle Scholar
  48. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007b) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305CrossRefGoogle Scholar
  49. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  50. Vettoretti G, Peltier WR (2003) Post-Eemian glacial inception. Part II: elements of a cryospheric moisture pump. J Clim 16:912–927CrossRefGoogle Scholar
  51. Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575CrossRefGoogle Scholar
  52. Yoshimori M, Reader MC, Weaver AJ, McFarlane NA (2002) On the causes of glacial inception 115 kaBP. Clim Dyn 18:383–402Google Scholar
  53. Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6ka and 21ka from ocean-atmosphere coupled model simulations. Clim Dyn 30(7–8):745–762CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andreas Born
    • 1
    • 2
  • Kerim H. Nisancioglu
    • 1
  • Pascale Braconnot
    • 3
  1. 1.Bjerknes Centre for Climate ResearchBergenNorway
  2. 2.Geophysical InstituteUniversity of BergenBergenNorway
  3. 3.IPSL/LSCE, Unité mixte CEA-CNRS-UVSQGif sur YvetteFrance

Personalised recommendations