Skip to main content

Advertisement

Log in

Influence of the Andes Mountains on South American moisture transport, convection, and precipitation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Mountain ranges are known to have a first-order control on mid-latitude climate, but previous studies have shown that the Andes have little effect on the large-scale circulation over South America. We use a limited-domain general circulation model (RegCM3) to evaluate the effect of the Andes on regional-scale atmospheric dynamics and precipitation. We present experiments in which Andean heights are specified at 250 m, and 25, 50, 75, and 100% of their modern values. Our experiments indicate that the Andes have a significant influence on moisture transport between the Amazon Basin and the central Andes, deep convective processes, and precipitation over much of South America through mechanical forcing of the South American low-level jet (LLJ) and topographic blocking of westerly flow from the Pacific Ocean. When the Andes are absent, the LLJ is absent and moisture transport over the central Andes is mainly northeastward. As a result, deep convection is suppressed and precipitation is low along the Andes. Above 50% of the modern elevation, a southward flowing LLJ develops along the eastern Andean flanks and transports moisture from the tropics to the subtropics. Moisture drawn from the Amazon Basin provides the latent energy required to drive convection and precipitation along the Andean front. Large northerly moisture flux and reduced low-level convergence over the Amazon Basin leads to a reduction in precipitation over much of the basin. Our model results are largely consistent with proxy evidence of Andean climate change, and have implications for the timing and rate of Andean surface uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524

    Article  Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Alonso RN, Jordan TE, Tabbutt KT, BVandervoort DS (1991) Giant evaporite belts of the Neogene central Andes. Geology 19:401–404

    Article  Google Scholar 

  • Alpers CN, Brimhall GH (1988) Middle Miocene climate change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656

    Article  Google Scholar 

  • Barnes JB, Ehlers TA, McQuarrie N, O’Sullivan PB, Tawackoli S (2008) Thermochronometer record of central Andean plateau growth, Bolivia (19.5S). Tectonics 27:TC3003. doi:10.1029/2007TC002174

    Article  Google Scholar 

  • Berbery EH, Collini EA (2000) Springtime precipitation and water vapor flux over southeastern South America. Mon Weather Rev 128:1328–1346

    Article  Google Scholar 

  • Broccoli AJ, Manabe S (1992) The effects of orography on midlatitude Northern Hemisphere dry climates. J Clim 5:1181–1201

    Article  Google Scholar 

  • Campetella CM, Vera CS (2002) The influence of the Andes Mountains on the South American low-level flow. Geophys Res Lett 29(17):1826. doi:10.1029/2002GL015451

    Article  Google Scholar 

  • Chou SC, Tanajura CAS, Xue Y, Nobre CA (2002) Validation of the coupled Eta/SSiB model over South America. J Geophys Res 107(D20):8088. doi:10.1029/2000JD000270

    Article  Google Scholar 

  • Colinvaux PA, Oliveira PE (2001) Amazon plant diversity and climate through the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:51–63

    Article  Google Scholar 

  • Cook KH, Vizy EK (2008) Effects of twenty-first-century climate change on the Amazon rain forest. J Clim 21:542–560

    Article  Google Scholar 

  • de Goncalves LGG, Shuttleworth WJ, Nijssen B, Burke EJ, Marengo JA, Chou SC, Houser P, Toll DL (2006) Evaluation of model-derived and remotely sensed precipitation products for continental South America. J Geophys Res 111:D16113. doi:10.1029/2005JD006276

    Article  Google Scholar 

  • DeMaria M (1985) Linear response of a stratified tropical atmosphere to convective forcing. J Atmos Sci 42:1944–1959

    Article  Google Scholar 

  • DeSales F, Xue Y (2006) Investigation of seasonal prediction of the South American regional climate using the nested model system. J Geophys Res 111:D20107. doi:10.1029/2005JD006989

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model NCAR technical report TN-397 + STR, p 72

  • Ehlers T, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sci Lett 281:238–248

    Article  Google Scholar 

  • Eltahir EA, Bras RL (1994) Precipitation recycling in the Amazon basin. Quat J R Meteorol Soc 120:861–880

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Enfield DB (1996) Relationship of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys Res Lett 23:3305–3308

    Article  Google Scholar 

  • Figueroa SN, Satyamurty P, Silva-Dias PL (1995) Simulations of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52:1573–1584

    Article  Google Scholar 

  • Gandu AW, Geisler JE (1991) A primitive equations model study of the effect of topography on the summer circulation over tropical South America. J Atmos Sci 48:1822–1836

    Article  Google Scholar 

  • Garreaud R (1999) Multiscale analysis of the summertime precipitation over the Central Andes. Mon Weather Rev 127:901–921

    Article  Google Scholar 

  • Garreaud RD (2000) Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon Weather Rev 128:3337–3346

    Article  Google Scholar 

  • Garreaud RD, Aceituno P (2001) Interannual Rainfall Variability over the South American Altiplano. J Clim 14:2779–2789

    Article  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano; observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22

    Article  Google Scholar 

  • Garzione CN, Molnar P, Libarkin J, MacFadden B (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet Sci Lett 241:543–556

    Article  Google Scholar 

  • Giorgi F, Marinucci MR (1996) An investigation of the sensitivity of simulated precipitation to model resolution and its implication for climate studies. Mon Weather Rev 124:148–166

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second-generation regional climate model (RegCM2). Part I. Boundary-layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, De Canio G (1993b) Development of a second-generation regional climate model (RegCM2). Part II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Gosh P, Garzione C, Eiler J (2006) Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311:511–515

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parametrizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation PennState/NCAR Mesoscale Model (MM5). NCAR technical report TN-398 + STR, p 121

  • Hoke GD, Isacks BL, Jordan TE, Yu JS (2004) Groundwater-sapping origin for the giant quebradas of northern Chile. Geology 32:605–608

    Article  Google Scholar 

  • Hoorn C (2006) The birth of a mighty Amazon. Scientific American 294:52–59

    Article  Google Scholar 

  • Hoorn C, Paxton CGM, Crampton WGR, Burgess P, Marshall LG, Lundberg JG, Rasanen ME, Linna AM (1996) Miocene deposits in the Amazonian foreland basin. Science 273:122–125

    Article  Google Scholar 

  • Horel JD, Hahmann AN, Geisler JE (1989) An investigation of the annual cycle of convective activity over the tropical Americas. J Clim 2:1388–1403

    Article  Google Scholar 

  • Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Article  Google Scholar 

  • Kleeman R (1989) A modeling study of the effect of the Andes on the summertime circulation of tropical South America. J Atmos Sci 46:3344–3362

    Article  Google Scholar 

  • Kleinert K, Strecker MR (2001) Climate change in response to orographic barrier uplift; Paleosol and stable isotope evidence from the late Neogene Santa Maria Basin, northwestern Argentina. Geol Soc Am Bull 113:728–742

    Article  Google Scholar 

  • Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL (1989) Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West; numerical experiments. J Geophys Res 94:18393–18407

    Article  Google Scholar 

  • Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Clim 8:2988–3005

    Article  Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–677

    Article  Google Scholar 

  • Lenters JD, Cook KH (1999) Summertime precipitation variability over South America: role of the large-scale circulation. Mon Weather Rev 127:409–431

    Article  Google Scholar 

  • McQuarrie N, Barnes JB, Ehlers TA (2008) Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17S). Tectonics 27:TC3007. doi:10.1029/2006TC002054

    Article  Google Scholar 

  • NOAA/NESDIS/NCDC (2003) Global–The Global Historical Climatology Network Precipitation (GHCN). http://gov.noaa.nosa:Global-GHCN-Precipitation

  • Nogues-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291

    Article  Google Scholar 

  • Nogues-Paegle J, Mo KC, Paegle J (1998) Predictability of the NCEP-NCAR reanalysis model during austral summer. Mon Weather Rev 126:3135–3152

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world—The ICPT RegCM and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Rasanen ME, Linna AM, Santos JC, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386–390

    Article  Google Scholar 

  • Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:761–764

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Article  Google Scholar 

  • Rojas M, Seth A (2003) Simulation and sensitivity in a nested modeling system for South America. Part II. GCM boundary forcing. J Clim 16:2454–2471

    Article  Google Scholar 

  • Rutllant J, Ulriksen P (1979) Boundary-layer dynamics of the extremely arid Northern part of Chile. Boundary Layer Meteorol 17:41–55

    Article  Google Scholar 

  • Salio P, Nicolini M, Saulo C (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res 107(D24):4816. doi:10.1029/2001JD001315

    Article  Google Scholar 

  • Schwerdtfeger W (1961) Stroemungs- und Temperaturfeld der freien Atmosphere ueber den Anden. Meteorol Rdsch 14:1–6

    Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  • Seth A, Rojas M (2003) Simulation and sensitivity in a nested modeling system for South America. Part I. Reanalysis boundary forcing. J Clim 16:2437–2453

    Article  Google Scholar 

  • Seth A, Rauscher SA, Camargo SJ, Qian J-H, Pal JS (2006) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dynamics 28:461–480

    Article  Google Scholar 

  • Silva-Dias PL, Schubert WH, DeMaria M (1983) Large-scale response of the tropical atmosphere to transient convection. J Atmos Sci 40:2689–2707

    Article  Google Scholar 

  • Starck D, Anzotegui L (2001) The late-Miocene climate change—persistence of a climate signal through the orogenic stratigraphic record in northwestern Argentina. J S Am Earth Sci 14:763–774

    Article  Google Scholar 

  • Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE, Sobel ER, Trauth MH (2007) Tectonics and climate of the southern Central Andes. Annu Rev Earth Planet Sci 35:747–787

    Article  Google Scholar 

  • Uba CE, Heubeck C, Hulka C (2005) Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sediment Geol 180:91–123

    Article  Google Scholar 

  • Uba CE, Heubeck C, Hulka C (2006) Evolution of the late Cenozoic Chaco foreland basin, southern Bolivia. Basin Res 18:145–170

    Article  Google Scholar 

  • USGS (1996) GTOPO30. http://eros.usgs.gov/

  • van der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742

    Article  Google Scholar 

  • Vandervoort DS, Jordan TE, Zeitler PK, Alonso RN (1995) Chronology of internal drainage development and uplift, southern Puna plateau, Argentine Central Andes. Geology 23:145–148

    Article  Google Scholar 

  • Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva-Dias PL, Zipser E (2006) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77

    Article  Google Scholar 

  • Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109:599–610

    Article  Google Scholar 

  • Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19:1579–1600

    Article  Google Scholar 

  • Wang H, Fu R (2002) Cross-equatorial flow and seasonal cycle of precipitation over South America. J Clim 15:1591–1608

    Article  Google Scholar 

Download references

Acknowledgment

Support for this research was provided by grants to C. Poulsen and T. Ehlers from the University of Michigan’s Graham Environmental Sustainability Institute and from the US National Science Foundation (EAR Award 0738822). We thank two anonymous reviewers for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Insel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insel, N., Poulsen, C.J. & Ehlers, T.A. Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35, 1477–1492 (2010). https://doi.org/10.1007/s00382-009-0637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0637-1

Keywords

Navigation