Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265
Google Scholar
Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543
Article
Google Scholar
Brasseur GP, Roeckner E (2005) Impact of improved air quality on the future evolution of climate. Geophys Res Lett 32(23):L23704
Article
Google Scholar
Budyko MI (1969) Effect of solar radiation variations on climate of Earth. Tellus 21(5):611–619
Article
Google Scholar
Chandler MA, Sohl LE (2000) Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J Geophys Res Atmos 105(D16):20737–20756
Article
Google Scholar
Crowley TJ, Hyde WT, Peltier WR (2001) CO2 levels required for deglaciation of a “Near-Snowball” Earth. Geophys Res Lett 28(2):283–286
Article
Google Scholar
Donnadieu Y, Godderis Y, Ramstein G, Nedelec A, Meert J (2004a) A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428(6980):303–306
Article
Google Scholar
Donnadieu Y, Ramstein G, Fluteau F, Roche D, Ganopolski A (2004b) The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic. Clim Dyn 22(2–3):293–306
Google Scholar
Enderton D, Marshall J (2009) Controls on the total dynamical heat transport of the atmosphere and oceans. J Atmos Sci (to appear)
Ferreira D, Rose B, Marshall J (2009) In preparation
Fortuin JPF, Kelder H (1998) An ozone climatology based on ozonesonde and satellite measurements. J Geophys Res Atmos 103(D24):31709–31734
Article
Google Scholar
Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere: A new parametrization. Beitr Phys Atmos 53:35–62
Google Scholar
Fraedrich K (1979) Catastrophes and Resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Q J R Meteorol Soc 105(443):147–167
Article
Google Scholar
Godderis Y, Donnadieu Y (2008) Carbon cycling and snowball Earth. Nature 456(7224)
Godderis Y, Donnadieu Y, Dessert C, Dupre B, Fluteau F, Francois LM, Meert J, Nedelec A, Ramstein G (2007) Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Comptes Rendus Geoscience 339(3-4):212–222
Article
Google Scholar
Goodman JC, Pierrehumbert RT (2003) Glacial flow of floating marine ice in “Snowball Earth”. J Geophys Res Oceans 108(C10):3308
Article
Google Scholar
Hagemann S, Machenhauer B, Jones R, Christensen OB, Deque M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23(5):547–567
Article
Google Scholar
Heinemann M, Jungclaus J, Jochem M (2009) Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM. Clim Past Dis 5:1297–1336
Article
Google Scholar
Held IM (2001) The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J Atmos Sci 58(8):943–948
Article
Google Scholar
Held IM, Suarez MJ (1974) Simple albedo feedback models of ice-caps. Tellus 26(6):613–629
Article
Google Scholar
Hibler WD (1979) Dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846
Article
Google Scholar
Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281(5381):1342–1346
Article
Google Scholar
Hoffman PF, Crowley JW, Johnston DT, Jones DS, Schrag DP (2008) Snowball prevention questioned. Nature 456(7224)
Hyde WT, Crowley TJ, Baum SK, Peltier WR (2000) Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405(6785):425–429
Article
Google Scholar
Jenkins GS, Frakes LA (1998) GCM sensitivity test using increased rotation rate, reduced solar forcing and orography to examine low latitude glaciation in the Neoproterozoic. Geophys Res Lett 25(18):3525–3528
Article
Google Scholar
Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972
Article
Google Scholar
Kirschvink JL (1992) The Proterozoic biosphere. In: Late Proterozoic low-latitude global glaciation: The snowball Earth. Cambridge University Press, New York, pp 51–52
Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37(2):296–312
Article
Google Scholar
Le Hir G, Ramstein G, Donnadieu Y, Pierrehumbert RT (2007) Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth. Comptes Rendus Geoscience 339(3–4):274–287
Article
Google Scholar
Lewis JP, Weaver AJ, Johnston ST, Eby M (2003) Neoproterozoic “snowball Earth”: dynamic sea ice over a quiescent ocean. Paleoceanography 18(4):1092
Article
Google Scholar
Lewis JP, Weaver AJ, Eby M (2007) Snowball versus slushball Earth: dynamic versus nondynamic sea ice? J Geophys Res Oceans 112(C11):C11014
Article
Google Scholar
Marotzke J, Botzet M (2007) Present-day and ice-covered equilibrium states in a comprehensive climate model. Geophys Res Lett 34(16). doi:10.1029/2006GL028880
Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell 5(2):91–127
Article
Google Scholar
Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682
Google Scholar
North GR (1975) Analytical solution to a simple climate model with diffusive heat transport. J Atmos Sci 32(7):1301–1307
Article
Google Scholar
Peltier WR, Liu YG (2008) Carbon cycling and snowball Earth Reply. Nature 456(7224)
Peltier WR, Tarasov L, Vettoretti G, Solheim LP (2004) Climate dynamics in deep time: modeling the “Snowball bifurcation” and assessing the plausibility of its occurrence. Extreme Proterozoic Geology, Geochemistry And Climate 146:107–124
Google Scholar
Peltier WR, Liu YG, Crowley JW (2007) Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450(7171):813–U1
Article
Google Scholar
Pierrehumbert RT (2002) The hydrologic cycle in deep-time climate problems. Nature 419(6903):191–198
Article
Google Scholar
Pollard D, Kasting JF (2005) Snowball Earth: A thin-ice solution with flowing sea glaciers. J Geophys Res Oceans 110(C7):C07010
Article
Google Scholar
Poulsen CJ (2003) Absence of a runaway ice-albedo feedback in the Neoproterozoic. Geology 31(6):473–476
Article
Google Scholar
Poulsen CJ, Jacob RL (2004) Factors that inhibit snowball Earth simulation. Paleoceanography 19(4):PA4021
Article
Google Scholar
Poulsen CJ, Pierrehumbert RT, Jacob RL (2001) Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”. Geophys Res Lett 28(8):1575–1578
Article
Google Scholar
Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342(6251):758–761
Article
Google Scholar
Roeckner E, Baeuml G, Bonaventura L, Brokop R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, part I: Model description. Tech. rep., Max Planck Institute for Meteorology, Hamburg, Germany
Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19(16):3771–3791
Article
Google Scholar
Romanova V, Lohmann G, Grosfeld K (2006) Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Clim The Past 2(1):31–42
Article
Google Scholar
Rose BEJ, Marshall J (2009) Ocean heat transport, sea ice, and multiple climate states: insights from energy balance models. J Atmos Sci (in press)
Rothman DH, Hayes JM, Summons RE (2003) Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA 100(14):8124–8129
Article
Google Scholar
Sellers WD (1969) A global climate model based on the energy balance of the Earth–atmosphere system. J Appl Meteorol 8:392–400
Article
Google Scholar
Semtner AJ (1976) Model for thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6(3):379–389
Article
Google Scholar
Stone PH, Yao MS (2004) The ice-covered Earth instability in a model of intermediate complexity. Clim Dyn 22(8):815–822
Article
Google Scholar
Valcke S, Caubel A, Declat D, Terray L (2003) OASIS Ocean Atmosphere Sea Ice Soil users’s guide. Tech. rep., CERFACS Tech. Rep. TR/CMGC/03/69, Toulouse, France, 85 pp
Walsh KJ, Sellers WD (1993) Response of a global climate model to a 30 percent reduction of the solar constant. Glob Planet Change 8(4):219–230
Article
Google Scholar
Washington WM, Parkinson CL (2005) An introduction to three-dimensional climate modeling, 2nd edn. University Science Books
Wild M, Roeckner E (2006) Radiative fluxes in the ECHAM5 general circulation model. J Clim 19(16):3792–3809
Article
Google Scholar
Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg Ocean primitive equation model HOPE. Tech. Rep. 13. Tech. rep., German Climate Computer Center (DKRZ), Hamburg, Germany