Climate Dynamics

, Volume 34, Issue 6, pp 781–795 | Cite as

Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since A.D. 1200

  • M. Macias FauriaEmail author
  • A. Grinsted
  • S. Helama
  • J. Moore
  • M. Timonen
  • T. Martma
  • E. Isaksson
  • M. Eronen


We reconstructed decadal to centennial variability of maximum sea ice extent in the Western Nordic Seas for A.D. 1200–1997 using a combination of a regional tree-ring chronology from the timberline area in Fennoscandia and δ18O from the Lomonosovfonna ice core in Svalbard. The reconstruction successfully explained 59% of the variance in sea ice extent based on the calibration period 1864–1997. The significance of the reconstruction statistics (reduction of error, coefficient of efficiency) is computed for the first time against a realistic noise background. The twentieth century sustained the lowest sea ice extent values since A.D. 1200: low sea ice extent also occurred before (mid-seventeenth and mid-eighteenth centuries, early fifteenth and late thirteenth centuries), but these periods were in no case as persistent as in the twentieth century. Largest sea ice extent values occurred from the seventeenth to the nineteenth centuries, during the Little Ice Age (LIA), with relatively smaller sea ice-covered area during the sixteenth century. Moderate sea ice extent occurred during thirteenth–fifteenth centuries. Reconstructed sea ice extent variability is dominated by decadal oscillations, frequently associated with decadal components of the North Atlantic Oscillation/Arctic Oscillation (NAO/AO), and multi-decadal lower frequency oscillations operating at ~50–120 year. Sea ice extent and NAO showed a non-stationary relationship during the observational period. The present low sea ice extent is unique over the last 800 years, and results from a decline started in late-nineteenth century after the LIA.


Sea ice Paleoclimatology Nordic seas Global warming Ice core Dendroclimatology Svalbard Fennoscandia NAO AO Little Ice Age 



This study was partially funded by the G8 Legacy Chair in Ecology given to Dr. E.A. Johnson at the University of Calgary (Canada). We want to thank all the people who in various ways helped to make the Lomonosovfonna ice-coring project possible. Logistical support came from NPI in Longyearbyen and financial support came from Norwegian Polar Institute and The Norwegian Research Council. We would also want to thank Dmitry Divine at the Norwegian Polar Institute in Tromsø (Norway) for his help and assessment on the quality of the Nordic Seas sea ice records. Finally, thanks also to all the people from various institutions in Finland who have helped in the development of the supra-long timberline tree-ring chronology. The Kone Foundation supported Samuli Helama.


  1. ACIA (2004) Impacts of a warming Arctic. Cambridge University Press, CambridgeGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723CrossRefGoogle Scholar
  3. Alexander MA, Bhatt U, Walsh J, Timlin M, Miller J, Scott J (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17(5):890–905. doi: 10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2 CrossRefGoogle Scholar
  4. Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Long-term variations of the storm climate over NW Europe. Glob Atmos Ocean Syst 6:97–120Google Scholar
  5. Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the Arctic—a possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  6. Briffa KR, Jones PD, Pilcher JR, Hughes MK (1988) Reconstructing summer temperatures in northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arct Antarct Alp Res 20(4):385–394Google Scholar
  7. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from A.D. 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  8. Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climate variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 9–41Google Scholar
  9. Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Planet Change 40:11–26CrossRefGoogle Scholar
  10. Burg JP (1978) A new analysis technique for time series data. In: Childers DG (ed) Modern spectrum analysis. IEEE Press, New York, pp 42–48Google Scholar
  11. Cavalieri DJ (2002) A link between Fram Strait sea ice export and atmospheric planetary wave phase. Geophys Res Lett 29(12):1614. doi: 10.1029/2002GL014684 CrossRefGoogle Scholar
  12. Comiso JC (2006) Abrupt decline in the Arctic winter sea ice cover. Geophys Res Lett 33:L18504. doi: 10.1029/2006GL027341 CrossRefGoogle Scholar
  13. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res 113:C02S07. doi: 10.1029/2007JC004257 CrossRefGoogle Scholar
  14. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. J Geophys Res 35:L01703. doi: 10.1029/2007GL031972 Google Scholar
  15. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53Google Scholar
  16. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean atmosphere general circulation model. Clim Dyn 13:757–767CrossRefGoogle Scholar
  17. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  18. Deser C, Teng H (2008) Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys Res Lett 35:L02504. doi: 10.1029/2007GL032023 CrossRefGoogle Scholar
  19. Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633CrossRefGoogle Scholar
  20. Dickson RR, Meincke J, Malmberg SA, Lee AJ (1988) The great salinity anomaly in the northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151CrossRefGoogle Scholar
  21. Dickson RR et al (2000) The Arctic Ocean response to the North Atlantic oscillation. J Clim 13:2671–2696CrossRefGoogle Scholar
  22. Divine DV, Dick C (2006) Historical variability of sea ice edge position in the Nordic Seas. J Geophys Res 111:C01001. doi: 10.1029/2004JC002851 CrossRefGoogle Scholar
  23. Erlandsson S (1936) Dendrochronological studies, report 23. Stockholms Högskolas Geokronological Institute, UppsalaGoogle Scholar
  24. Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland. Part 1. Chronology construction and initial inferences. Holocene 12(6):673–680CrossRefGoogle Scholar
  25. Fischer H, Werner M, Wagenbach D, Schwager M, Thorsteinnson T, Wilhelms F, Kipfstuhl J, Sommer S (1998) Little ice age clearly recorded in northern Greenland ice-cores. Geophys Res Lett 25:1749–1752CrossRefGoogle Scholar
  26. Fritts HC (1962) An approach to dendroclimatology: screening by means of multiple regression techniques. J Geophys Res 67:1413–1420CrossRefGoogle Scholar
  27. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  28. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188CrossRefGoogle Scholar
  29. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3-1–3-41. doi: 10.1029/2000RG000092 CrossRefGoogle Scholar
  30. Gleissberg W (1944) A table of secular variations of the solar cycle. Terr Magn Atm Electr 49:243–244CrossRefGoogle Scholar
  31. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin Process Geophys 11:561–566CrossRefGoogle Scholar
  32. Grotefendt K, Logemann K, Quadfasel D, Ronski S (1998) Is the Arctic Ocean warming? J Geophys Res 103(C12):27679–27687CrossRefGoogle Scholar
  33. Hammer C, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Steffensen JP (2001) The paleoclimatic record from a 345-m long ice-core from the Hans Tausen Iskappe. Meddelelser om Grønland Geoscience 39:87–95Google Scholar
  34. Helama S, Lindholm M, Timonen M, Meriläinen J, Eronen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland. Part 2. Interannual to centennial variability in summer temperatures for 7,500 years. Holocene 12(6):681–687CrossRefGoogle Scholar
  35. Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic oscillation and Arctic sea ice export. Geophys Res Lett 27:989–992CrossRefGoogle Scholar
  36. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  37. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  38. Isaksson E et al (2001) A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–1997 data in relation to present climate and environmental conditions. J Glaciol 47(157):335–345CrossRefGoogle Scholar
  39. Isaksson E et al (2003) Ice cores from Svalbard—useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228Google Scholar
  40. Isaksson E et al (2005) Two ice-core δ18O records from Svalbard illustrating climate and sea-ice variability over the last 400 years. Holocene 15(4):501–509CrossRefGoogle Scholar
  41. Jevrejeva S, Moore JC (2001) Singular spectrum analysis of Baltic Sea ice conditions and large-scale atmospheric patterns since 1708. Geophys Res Lett 28:4503–4506CrossRefGoogle Scholar
  42. Jevrejeva S, Moore JC, Grinsted A (2003) Influence of the Arctic oscillation and El Niño-Southern oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J Geophys Res 108(D21):4677. doi: 10.1029/2003JD003417 CrossRefGoogle Scholar
  43. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi: 10.1029/2003RG000143 CrossRefGoogle Scholar
  44. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8(4):455–471CrossRefGoogle Scholar
  45. Jones PD et al (1999) Monthly mean pressure reconstructions for Europe for the 1780–1995 Period. Int J Climatol 19:347–364. doi: 10.1002/(SICI)1097-0088(19990330)19:4<347::AID-JOC363>3.0.CO;2-S CrossRefGoogle Scholar
  46. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  47. Kekonen T, Moore J, Perämäki P, Mulvaney R, Isaksson E, Pohjola V, van de Wal RSW (2005) The 800 year long ion record from the Lomonosovfonna (Svalbard) ice core. J Geophys Res 110:D07304. doi: 10.1029/2004JD005223 CrossRefGoogle Scholar
  48. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  49. Lamb HH (1977) Climate: present, past and future vol 2: climatic history and the future. Methuen, LondonGoogle Scholar
  50. Lemke PJ, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 337–383Google Scholar
  51. Lindholm M (1996) Reconstruction of the past climate from ring-width chronologies of Scots pine (Pinus sylvestris L.) at the northern forest limit in Fennoscandia. Ph.D. Dissertation, University of Joensuu, FinlandGoogle Scholar
  52. Lindsay RW, Zhang J (2005) The thinning of arctic sea-ice, 1988–2003: have we passed a tipping point? J Clim 18:4879–4894CrossRefGoogle Scholar
  53. Lockwood M, Fröhlich C (2007) Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc A 463:2447–2460. doi: 10.1098/rspa.2007.1880 CrossRefGoogle Scholar
  54. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. MIT statistical forecasting project report no. 1, contract AF 19, 604–1566Google Scholar
  55. Løyning TB, Dick C, Goodwin H, Pavlova O, Vinje T, Kjærnli G, Villinger T (2003) ACSYS historical ice chart archive (1553–2002). ACSYS IACPO informal report no. 8. World climate research programme, Arctic Climate System Study, TromsøGoogle Scholar
  56. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I. Main features and storm track characteristics of the response. J Clim 17(5):857–876CrossRefGoogle Scholar
  57. Manabe S, Spelman MJ, Stouffer RJ (1992) Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part II. Seasonal response. J Clim 5:105–126CrossRefGoogle Scholar
  58. Mann ME, Emanuel K (2006) Atlantic Hurricane trends linked to climate change. Eos Trans AGU 87(24):233–244. doi: 10.1029/2006EO240001 CrossRefGoogle Scholar
  59. Mann ME, Rutherford S, Wahl E, Ammann C (2005) Testing the fidelity of methods used in proxy-based reconstructions of past climate. J Clim 18:4097–4107CrossRefGoogle Scholar
  60. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007a) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501. doi: 10.1029/2007GL032043 CrossRefGoogle Scholar
  61. Maslanik JA, Drobot S, Fowler C, Emery W, Barry R (2007b) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711. doi: 10.1029/2006GL028269 CrossRefGoogle Scholar
  62. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  63. Moore GWK (2006) Reduction in seasonal sea ice concentration surrounding southern Baffin Island 1979–2004. Geophys Res Lett 33:L20501. doi: 10.1029/2006GL027764 CrossRefGoogle Scholar
  64. Moore JC, Grinsted A, Kekonen T, Pohjola V (2005) Separation of melting and environmental signals in an ice core with seasonal melt. Geophys Res Lett 32:L10501. doi: 10.1029/2005GL023039 CrossRefGoogle Scholar
  65. Moore J, Kekonen T, Grinsted A, Isaksson E (2006) Sulfate source inventories from a Svalbard ice core record spanning the industrial revolution. J Geophys Res 111:D15307. doi: 10.1029/2005JD006453 CrossRefGoogle Scholar
  66. Morison J, Aagaard K, Steele M (2000) Recent environmental changes in the Arctic: a review. Arctic 53(4):359–371Google Scholar
  67. Nghiem SV, Chao Y, Neumann G, Li P, Perovich DK, Street T, Clemente-Colón P (2006) Depletion of perennial sea ice in the East Arctic Ocean. Geophys Res Lett 33:L17501. doi: 10.1029/2006GL027198 CrossRefGoogle Scholar
  68. Nordli Ø, Kohler J (2003) The early twentieth century warming. Daily observations at Green Harbor, Grønfjorden, Spitsbergen. Norwegian Meteorological Institute, Report No. 12/03 KLIMA, OsloGoogle Scholar
  69. Ogilvie A (1992) Documentary evidence for changes in the climate of Iceland, A.D. 1500–1800. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 92–117Google Scholar
  70. Ogurtsov MG, Kocharov GE, Lindholm M, Meriläinen J, Eronen M (2002) Evidence of solar variation in tree-ring-based climate reconstructions. Solar Phys 205:403–417CrossRefGoogle Scholar
  71. Overland JE, Wang M (2005) The Arctic climate paradox: the recent decrease of the Arctic oscillation. Geophys Res Lett 32:L06701. doi: 10.1029/2004GL021752 CrossRefGoogle Scholar
  72. Overpeck JK et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256CrossRefGoogle Scholar
  73. Parkinson CL, Cavalieri DJ (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07003. doi: 10.1029/2007JC004558 CrossRefGoogle Scholar
  74. Parkinson C, Cavalieri D, Gloersen P, Zwally H, Comiso J (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104(C9):20837–20856CrossRefGoogle Scholar
  75. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CV, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  76. Pohjola VA, Moore JC, Isaksson E, Jauhiainen T, van de Wal RSW, Martma T, Meijer HAJ, Vaikmäe R (2002) Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard. J Geophys Res 107(D4):4036. doi: 10.1029/2000JD000149 CrossRefGoogle Scholar
  77. Polyakov IV, Johnson MA (2000) Arctic decadal and interdecadal variability. Geophys Res Lett 27(24):4097–4100CrossRefGoogle Scholar
  78. Polyakov IV et al (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29(18):1878. doi: 10.1029/2001GL011111 CrossRefGoogle Scholar
  79. Polyakov IV, Bekryaev RV, Alekseev GV, Bhatt US, Colony RL, Johnson MA, Makshtas AP, Walsh D (2003a) Variability and trends of air temperature and pressure in the Maritime Arctic, 1875–2000. J Clim 16:2067–2077CrossRefGoogle Scholar
  80. Polyakov IV et al (2003b) Long-term ice variability in Arctic Marginal Seas. J Clim 16:2078–2085CrossRefGoogle Scholar
  81. Polyakov IV et al (2004) Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J Clim 17(23):4485–4497CrossRefGoogle Scholar
  82. Polyakova EI, Journel AG, Polyakov IV, Bhatt US (2006) Changing relationship between the North Atlantic oscillation and key North Atlantic climate parameters. Geophys Res Lett 33:L03711. doi: 10.1029/2005GL024573 CrossRefGoogle Scholar
  83. Randall D et al (1998) Status of and outlook for large-scale modeling of atmosphere–ice–ocean interactions in the Arctic. Bull Am Meteorol Soc 79:197–219CrossRefGoogle Scholar
  84. Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic oscillation. J Clim 15:2648–2663CrossRefGoogle Scholar
  85. Robinson DA, Serreze MC, Barry RG, Scharfen G, Kukla G (1992) Large-scale patterns and variability of snowmelt and parameterized surface albedo in the Arctic basin. J Clim 5:1109–1119CrossRefGoogle Scholar
  86. Rothrock DA, Zhang J (2005) Arctic Ocean sea ice volume: what explains its recent depletion? J Geophys Res 110:C01002. doi: 10.1029/2004JC002282 CrossRefGoogle Scholar
  87. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472CrossRefGoogle Scholar
  88. Rothrock DA, Percival DB, Wensnahan M (2008) The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi: 10.1029/2007JC004252 CrossRefGoogle Scholar
  89. Schaeffer M, Selten FM, Opsteegh JD, Goose H (2004) The influence of ocean convection patterns on high-latitude climate projections. J Clim 17:4316–4329CrossRefGoogle Scholar
  90. Serreze MC, Francis JA (2006a) The Arctic amplification debate. Clim Change 76:241–264CrossRefGoogle Scholar
  91. Serreze MC, Francis JA (2006b) The Arctic on the fast track of change. Weather 61(3):65–69CrossRefGoogle Scholar
  92. Serreze MC, Carse F, Barry R, Rogers JC (1997) Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J Clim 10:453–464CrossRefGoogle Scholar
  93. Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207CrossRefGoogle Scholar
  94. Serreze MC et al (2003) A record minimum arctic sea ice extent, area in 2002. Geophys Res Lett 30(3):1110. doi: 10.1029/2002GL016406 CrossRefGoogle Scholar
  95. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  96. Shapiro I, Colony R, Vinje T (2003) April sea ice extent in the Barents Sea, 1850–2001. Polar Res 22(1):5–10CrossRefGoogle Scholar
  97. Singarayer JS, Bamber J, Valdes PJ (2006) Twenty-first-century climate impacts from a declining Arctic Sea ice cover. J Clim 19:1109–1125CrossRefGoogle Scholar
  98. Slonosky VC, Jones PD, Davies TD (2001) Atmospheric circulation and surface temperature in Europe from the eighteenth century to 1995. Int J Climatol 21:63–75CrossRefGoogle Scholar
  99. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi: 10.1029/2007GL029703 CrossRefGoogle Scholar
  100. Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic Sea ice extent plummets in 2007. Eos Trans AGU 89(2):13–14CrossRefGoogle Scholar
  101. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  102. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I. Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  103. Thompson DWJ, Wallace JM, Hegerl G (2000) Annular modes in the extratropical circulation. Part II. Trends. J Clim 13:1018–1036CrossRefGoogle Scholar
  104. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  105. Tucker WB, Weatherly JW, Eppler DT, Farmer LD, Bentley DL (2001) Evidence for rapid thinning of sea ice in the Western Arctic Ocean at the end of the 1980s. Geophys Res Lett 28:2851–2854CrossRefGoogle Scholar
  106. Vinje T (1976) Sea ice conditions in the European sector of the marginal seas of the Arctic, 1966–1975. Norsk Polarinst, Årbok, 1975, Norwegian Polar Institute, pp 163–174Google Scholar
  107. Vinje T (1999) Barents Sea ice edge variation over the past 400 years. Extended abstracts, workshop on sea-ice charts of the Arctic. World Meteorological Organization, Seattle, WMO/TD (949): 4–6Google Scholar
  108. Vinje T (2001) Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J Clim 14(3):255–267CrossRefGoogle Scholar
  109. Vinnikov KY et al (1999) Global warming and Northern Hemisphere Sea ice extent. Science 286:1934–1937CrossRefGoogle Scholar
  110. Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW (2003) NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys Res Lett 30(7):1387. doi: 10.1029/2002GL016193 CrossRefGoogle Scholar
  111. Virkkunen K, Moore JC, Isaksson E, Pohjola V, Perämäki P, Grinsted A, Kekonen T (2007) Warm summers and ion concentrations in snow: comparison of present day with Medieval Warm Epoch from snow pits and an ice core from Lomonosovfonna, Svalbard. J Glaciol 53(183):623–634CrossRefGoogle Scholar
  112. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–221CrossRefGoogle Scholar
  113. Winton M (2006) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33:L23504. doi: 10.1029/2006GL028017 CrossRefGoogle Scholar
  114. Zhang J, Lindsay R, Steele M, Schweiger A (2008) What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys Res Lett 35:L11505. doi: 10.1029/2008GL034005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. Macias Fauria
    • 1
    • 2
    • 5
    • 10
    Email author
  • A. Grinsted
    • 4
    • 3
  • S. Helama
    • 2
  • J. Moore
    • 3
    • 6
    • 7
  • M. Timonen
    • 5
  • T. Martma
    • 9
  • E. Isaksson
    • 8
  • M. Eronen
    • 2
  1. 1.Biogeoscience InstituteUniversity of CalgaryCalgaryCanada
  2. 2.Department of GeologyUniversity of HelsinkiHelsinkiFinland
  3. 3.Arctic CentreUniversity of LaplandRovaniemiFinland
  4. 4.Centre for Ice and Climate, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  5. 5.Rovaniemi Research StationFinnish Forest InstituteRovaniemiFinland
  6. 6.Thule InstituteUniversity of OuluOuluFinland
  7. 7.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  8. 8.Polar Environmental CentreNorwegian Polar InstituteTromsøNorway
  9. 9.Institute of GeologyTallinn University of TechnologyTallinnEstonia
  10. 10.Department of Ecology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations