Climate Dynamics

, Volume 35, Issue 5, pp 807–826 | Cite as

Further analysis of singular vector and ENSO predictability in the Lamont model—Part I: singular vector and the control factors

  • Yanjie Cheng
  • Youmin TangEmail author
  • Xiaobing Zhou
  • Peter Jackson
  • Dake Chen


In this study, singular vector analysis was performed for the period from 1856 to 2003 using the latest Zebiak–Cane model version LDEO5. The singular vector, representing the optimal growth pattern of initial perturbations/errors, was obtained by perturbing the constructed tangent linear model of the Zebiak–Cane model. Variations in the singular vector and singular value, as a function of initial time, season, ENSO states, and optimal period, were investigated. Emphasis was placed on exploring relative roles of linear and nonlinear processes in the optimal perturbation growth of ENSO, and deriving statistically robust conclusions using long-term singular vector analysis. It was found that the first singular vector is dominated by a west–east dipole spanning most of the equatorial Pacific, with one center located in the east and the other in the central Pacific. Singular vectors are less sensitive to initial conditions, i.e., independence of seasons and decades; while singular values exhibit a strong sensitivity to initial conditions. The dynamical diagnosis shows that the total linear and nonlinear heating terms play opposite roles in controlling the optimal perturbation growth, and that the linear optimal perturbation is more than twice as large as the nonlinear one. The total linear heating causes a warming effect and controls two positive perturbation growth regions: one in the central Pacific and the other in the eastern Pacific; whereas the total linearized nonlinear advection brings a cooling effect controlling the negative perturbation growth in the central Pacific.


ENSO Predictability Singular vector analysis 



This work is supported by Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) GR523. Yanjie Cheng is also supported by the Graduate fellowship of NSERC PGS D2-362539-2008. This work benefits from discussions with Dr. Soon-IL An. We also thank Dr. B. P. Kirtman and one anonymous reviewer for their constructive comments.


  1. An S, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412. doi: 10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2 CrossRefGoogle Scholar
  2. An S, Ham YG, Kug JS, Jin FF, Kang IS (2005) El Niño–La Niña asymmetry in the coupled model intercomparison project simulations. J Clim 18:2617–2627. doi: 10.1175/JCLI3433.1 CrossRefGoogle Scholar
  3. Battisti DS (1988) The dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J Atmos Sci 45(20):2889–2919. doi: 10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2 CrossRefGoogle Scholar
  4. Cai M, Kalnay E, Toth Z (2003) Bred vectors of the Zebiak–Cane Model and their potential application to ENSO predictions. J Clim 16:40–56. doi: 10.1175/1520-0442(2003)016<0040:BVOTZC>2.0.CO;2 CrossRefGoogle Scholar
  5. Chen D, Cane MA (2008) El Niño prediction and predictability. J Comput Phys 227:3625–3640. doi: 10.1016/ CrossRefGoogle Scholar
  6. Chen YQ, Battisti DS, Palmer RN, Barsugli J, Sarachik E (1997) A study of the predictability of tropical Pacific SST in a coupled atmosphere/ocean model using singular vector analysis. Mon Weather Rev 125:831–845. doi: 10.1175/1520-0493(1997)125<0831:ASOTPO>2.0.CO;2 CrossRefGoogle Scholar
  7. Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736. doi: 10.1038/nature02439 CrossRefGoogle Scholar
  8. Fan Y, Allen MR, Anderson DLT, Balmaseda MA (2000) How predictability depends on the nature of uncertainty in initial conditions in a coupled model of ENSO. J Clim 13:3298–3313. doi: 10.1175/1520-0442(2000)013<3298:HPDOTN>2.0.CO;2 CrossRefGoogle Scholar
  9. Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64:3281–3295. doi: 10.1175/JAS4029.1 CrossRefGoogle Scholar
  10. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462. doi: 10.1002/qj.49710644905 CrossRefGoogle Scholar
  11. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566CrossRefGoogle Scholar
  12. Jin FF, Neelin JD, Ghil M (1994) El Niño on the devil’s staircase: annual subharmonic steps to chaos. Science 264:70–72. doi: 10.1126/science.264.5155.70 CrossRefGoogle Scholar
  13. Jin EK, Kinter JLIII, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere model. Clim Dyn 31:647–664. doi: 10.1007/s00382-008-0397-3 CrossRefGoogle Scholar
  14. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822. doi: 10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2 CrossRefGoogle Scholar
  15. Kirtman BP, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S (2002) Current status of ENSO forecast skill. A report to the Climate Variability and Predictability. (CLIVAR) Numerical Experimentation Group (NEG), CLIVAR Working Group on Seasonal to Interannual Prediction. Available online at
  16. Kleeman R, Moore AM (1997) A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767. doi: 10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2 CrossRefGoogle Scholar
  17. Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetma A, O’Brien J, Rosati A, Schneither E (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103(C7):14375–14393. doi: 10.1029/97JC03413 CrossRefGoogle Scholar
  18. Li Z, Navon IM, Hussaini YM (2005) Analysis of the singular vectors of the full-physics FSU global spectral model. Tellus A Dyn Meterol Oceanogr 57:560–574. doi: 10.1111/j.1600-0870.2005.00114.x Google Scholar
  19. Lorenz EN (1965) A study of the predictability of a 28-variable atmospheric model. Tellus 17:321–333CrossRefGoogle Scholar
  20. Moore AM et al (2006) Optimal forcing patterns for coupled models of ENSO. J Clim 19:4683–4699. doi: 10.1175/JCLI3870.1 CrossRefGoogle Scholar
  21. Moore AM, Kleeman R (1996) The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc 122:1405–1446. doi: 10.1002/qj.49712253409 CrossRefGoogle Scholar
  22. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024. doi: 10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2 CrossRefGoogle Scholar
  23. Shukla J (1998) Predictability in the Midst of Chaos: a scientific basis for climate forecasting. Science 282:728–731. doi: 10.1126/science.282.5389.728 CrossRefGoogle Scholar
  24. Stern W, Miyakoda K (1995) Feasibility of seasonal forecasts inferred from multiple GCM simulations. J Clim 8:1071–1085. doi: 10.1175/1520-0442(1995)008<1071:FOSFIF>2.0.CO;2 CrossRefGoogle Scholar
  25. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287. doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2 CrossRefGoogle Scholar
  26. Tang Y, Deng Z (2009) Low-dimensional nonlinearity of ENSO and its impact on predictability. Physical D (submitted)Google Scholar
  27. Tang Y, Hsieh WW (2003) ENSO simulation and predictions using a hybrid coupled model with data assimilation. J Jpn Meteor Soc 81(1):1–19. doi: 10.2151/jmsj.81.1 CrossRefGoogle Scholar
  28. Tang Y, Kleeman R, Miller S (2006) ENSO predictability of a fully coupled GCM model using singular vector analysis. J Clim 19:3361–3377. doi: 10.1175/JCLI3771.1 CrossRefGoogle Scholar
  29. Tang Y, Deng Z, Zhou X, Cheng Y, Chen D (2008) Interdecadal variation of ENSO predictability in multiple models. J Clim 21:4811–4833. doi: 10.1175/2008JCLI2193.1 CrossRefGoogle Scholar
  30. Vecchi GA, Harrison DE (2003) On the termination of the 2002–03 El Niño event. Geophys Res Lett 30:1946. doi: 10.1029/2003GL017564 CrossRefGoogle Scholar
  31. Vialard J, Vitart F, Balmaseda MA, Stockdale TN, Anderson DL (2005) An ensemble generation method for seasonal forecasting with an ocean-atmosphere coupled model. Mon Weather Rev 133:441–453. doi: 10.1175/MWR-2863.1 CrossRefGoogle Scholar
  32. Xue Y, Cane MA, Zebiak SE (1997a) Predictability of a coupled model of ENSO using singular vector analysis, Part I: optimal growth in seasonal background and ENSO cycles. Mon Weather Rev 125:2043–2056. doi: 10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2 CrossRefGoogle Scholar
  33. Xue Y, Cane MA, Zebiak SE (1997b) Predictability of a coupled model of ENSO using singular vector analysis, part II: optimal growth and forecast skill. Mon Weather Rev 125:2057–2073. doi: 10.1175/1520-0493(1997)125<2057:POACMO>2.0.CO;2 CrossRefGoogle Scholar
  34. Zebiak SE, Cane MA (1987) A model El Niño-Southern oscillation. Mon Weather Rev 115:2262–2278. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 CrossRefGoogle Scholar
  35. Zhou X, Tang Y, Deng Z (2007) The impact of nonlinear atmosphere on the fastest error growth of ENSO prediction. Clim Dyn 30:519–531. doi: 10.1007/s00382-007-0302-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yanjie Cheng
    • 1
  • Youmin Tang
    • 1
    Email author
  • Xiaobing Zhou
    • 1
    • 4
  • Peter Jackson
    • 1
  • Dake Chen
    • 2
    • 3
  1. 1.Environmental Science and EngineeringUniversity of Northern British ColumbiaPrince GeorgeCanada
  2. 2.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  3. 3.State Key Laboratory of Satellite Ocean Environment DynamicsHangzhouChina
  4. 4.Centre for Australian Weather and Climate Research (CAWCR), Bureau of MeteorologyMelbourneAustralia

Personalised recommendations