Fast versus slow response in climate change: implications for the global hydrological cycle

Abstract

Recent studies have shown that changes in global mean precipitation are larger for solar forcing than for CO2 forcing of similar magnitude. In this paper, we use an atmospheric general circulation model to show that the differences originate from differing fast responses of the climate system. We estimate the adjusted radiative forcing and fast response using Hansen’s “fixed-SST forcing” method. Total climate system response is calculated using mixed layer simulations using the same model. Our analysis shows that the fast response is almost 40% of the total response for few key variables like precipitation and evaporation. We further demonstrate that the hydrologic sensitivity, defined as the change in global mean precipitation per unit warming, is the same for the two forcings when the fast responses are excluded from the definition of hydrologic sensitivity, suggesting that the slow response (feedback) of the hydrological cycle is independent of the forcing mechanism. Based on our results, we recommend that the fast and slow response be compared separately in multi-model intercomparisons to discover and understand robust responses in hydrologic cycle. The significance of this study to geoengineering is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adler RF et al (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res Atmos 113:D22103. doi:10.1029/2008JD010536

    Article  Google Scholar 

  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  3. Andrews T, Forster PM (2008) CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys Res Lett 35:L04802. doi:10.1029/2007GL032273

    Article  Google Scholar 

  4. Andrews T et al (2009) A surface energy perspective on climate change. J Clim (in press)

  5. Bala G et al (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105(22):7664–7669. doi:10.1073/pnas.0711648105

    Article  Google Scholar 

  6. Betts RA et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041. doi:10.1038/nature06045

    Article  Google Scholar 

  7. Cao L et al (2009) Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0). Geophys Res Lett (in press)

  8. Collins WD et al (2006a) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J Geophys Res Atmos 111:D14317

    Article  Google Scholar 

  9. Collins WD et al (2006b) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19(11):2144–2161. doi:10.1175/JCLI3760.1

    Article  Google Scholar 

  10. Gedney N et al (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi:10.1038/nature04504

    Article  Google Scholar 

  11. Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21(1):58–71. doi:10.1175/2007JCLI1834.1

    Article  Google Scholar 

  12. Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747

    Article  Google Scholar 

  13. Hansen J et al (1997) Radiative forcing and climate response. J Geophys Res Atmos 102(D6):6831–6864. doi:10.1029/96JD03436

    Article  Google Scholar 

  14. Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res Atmos 110:D18104

    Article  Google Scholar 

  15. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  16. IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  17. Lambert FH, Faull NE (2007) Tropospheric adjustment: the response of two general circulation models to a change in insolation. Geophys Res Lett 34:L03701. doi:10.1029/2006GL028124

    Article  Google Scholar 

  18. Levis S et al (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26(6):747–750. doi:10.1029/1999GL900107

    Article  Google Scholar 

  19. Levis S et al (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13(7):1313–1325. doi:10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2

    Article  Google Scholar 

  20. Lunt DJ et al (2008) “Sunshade World”: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys Res Lett 35:L12710. doi:10.1029/2008GL033674

    Article  Google Scholar 

  21. Matthews HD, Caldeira K (2007) Transient climate-carbon simulations of planetary geoengineering. Proc Natl Acad Sci USA 104(24):9949–9954. doi:10.1073/pnas.0700419104

    Article  Google Scholar 

  22. Rasch PJ et al (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179

    Article  Google Scholar 

  23. Robock A et al (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113:D16101. doi:16110.11029/12008JD010050

    Article  Google Scholar 

  24. Sellers PJ et al (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271(5254):1402–1406. doi:10.1126/science.271.5254.1402

    Article  Google Scholar 

  25. Shine KP et al (2003) An alternative to radiative forcing for estimating the relative importance of climate change mechanisms. Geophys Res Lett 30:2047. doi:10.1029/2003GL018141

    Article  Google Scholar 

  26. Wentz FJ et al (2007) How much more rain will global warming bring? Science 317(5835):233–235. doi:10.1126/science.1140746

    Article  Google Scholar 

  27. Yang FL et al (2003) Intensity of hydrological cycles in warmer climates. J Clim 16(14):2419–2423. doi:10.1175/2779.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. J. Srinivasan and Drs. Karl Taylor and Peter Caldwell for their interest in this work and helpful discussions on fast adjustments induced by instantaneous CO2 and solar forcings.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Govindasamy Bala.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bala, G., Caldeira, K. & Nemani, R. Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35, 423–434 (2010). https://doi.org/10.1007/s00382-009-0583-y

Download citation

Keywords

  • Latent Heat Flux
  • Land Surface Temperature
  • Slow Response
  • Fast Adjustment
  • Hydrologic Sensitivity