Skip to main content

Advertisement

Log in

Three centuries of Slovakian drought dynamics

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Tree-ring data from Slovakia are used to reconstruct decadal-scale fluctuations of the self-calibrated Palmer Drought Severity Index (scPDSI) over 1744–2006. The ring width chronology correlates at 0.58 (annual) and 0.88 (decadal) with regional-scale (48–50°N and 18–20°E) summer (June–August) scPDSI variations (1901–2002). Driest and wettest years common to the tree-ring and target data are 1947, 1948, 1964, and 1916, 1927, 1938, 1941, respectively. The model indicates decadal-scale drought ~1780–1810, 1850–1870, 1940–1960, and during the late twentieth century. The wettest period occurred ~1745–1775. Instrumental measurements and documentary evidence allow the reconstructed drought extremes to be verified and also provide additional insights on associated synoptic drivers and socioeconomic impacts. Comparison of anomalous dry conditions with European-scale fields of 500 hPa geopotential height retains positive pressure anomalies centered over Central Europe leading to atmospheric stability, subsidence and dry conditions. Negative mid-tropospheric geopotential height anomalies over Western Europe are connected with anomalous wet conditions over Slovakia. Nine existing, annually resolved hydro-climatic reconstructions from Central Europe, which were herein considered for comparison with the Slovakian findings, reveal significant high- to low-frequency coherency among the majority of records. Differences between the Slovakian and the other reconstructions are most evident at the end of the nineteenth century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CE:

Coefficient of efficiency

CRU:

Climatic Research Unit

DW:

Durbin–Watson

EPS:

Expressed Population Signal

GCM:

Global circulation model

GISS:

Goddard Institute for Space Studies

JJA:

June–August

m asl:

Meter above sea-level

MTM:

Multi-Taper method

PDSI:

Palmer drought severity index

r :

Pearson’s correlation coefficient

Rbar:

Inter-series correlation

RE:

Reduction of error

scPDSI:

Self-calibrated Palmer drought severity index

STDEV:

Standard deviation

TRW:

Tree-ring width

References

  • Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian basin from 1946 to 2001. Glob Planet Change 57:83–95. doi:10.1016/j.gloplacha.2006.11.002

    Article  Google Scholar 

  • Bartholy J, Pongrácz R, Molnár Z (2004) Classification and analysis of past climate information based on historic documentary sources for the Carpathian Basin. Int J Climatol 24:1759–1776. doi:10.1002/joc.1106

    Article  Google Scholar 

  • Brázdil R, Kiss A (2001) Daily weather observations at Košice, Slovakia, in the period 1677–1681. Meteorol Cas 4:3–14

    Google Scholar 

  • Brázdil R, Štekl J (1986) Cirkulační procesy a atmosférické srážky v ČSSR (Circulation processes and atmospheric precipitation in the C.S.S.R.). Univerzita J. E. Purkyně, Brno

    Google Scholar 

  • Brádka J, Dřevikovský A, Gregor Z, Kolesár J (1961) Počasí na území Čech a Moravy v typických povětrnostních situacích (Weather on the territory of Bohemia and Moravia in typical weather situations). Hydrometeorologický ústav, Praha

    Google Scholar 

  • Brázdil R, Štěpánková P, Kyncl T, Kyncl J (2002) Fir tree-ring reconstruction of March–July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res 20:223–239. doi:10.3354/cr020223

    Article  Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe–state of the art. Clim Change 70:363–430. doi:10.1007/s10584-005-5924-1

    Article  Google Scholar 

  • Brázdil R, Kiss A, Luterbacher J, Valášek H (2008a) Weather patterns in eastern Slovakia 1717–1730, based on records from the Breslau meteorological network. Int J Climatol 28:1639–1651. doi:10.1002/joc.1667

    Article  Google Scholar 

  • Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P, Žalud Z (2008b) Variability of droughts in the Czech Republic, 1881–2006. Theor Appl Climatol. doi:10.1007/s00704-008-0065-x

  • Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth/climate response of a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:689–702

    Google Scholar 

  • Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453. doi:10.1111/j.1365-2486.2008.01640.x

    Article  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216

    Article  Google Scholar 

  • Cebulak E, Faško P, Lapin M, Šťastný P (2000) Extreme precipitation events in the Western Carpathians. In: Prace Geograficzne, vol 108, Instytut Geografii, UJ, pp 117–124

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. PhD Thesis, University of Arizona, p 171

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. doi:10.1002/joc.3370140404

    Article  Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237. doi:10.1177/095968369500500211

    Article  Google Scholar 

  • Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíčková M (2009) A standard paleoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, A.D. 1718–2007. Int J Climatol (in press)

  • Drinka R (2005) Synoptic causes of wet-spell occurrence in Slovakia during 1988–2002. Meteorol Cas 8:193–198

    Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression. Biometrika 38:159–178

    Google Scholar 

  • Esper J, Niederer R, Bebi P, Frank DC (2008) Climate signal age effects: evidence from young and old trees in the Swiss Engadin. For Ecol Manage 255:3783–3789

    Article  Google Scholar 

  • Faško P, Lapin M, Sekáčová Z, Šťastný P (2003) Extraordinary climatic anomaly in 2003. Meteorol Cas 6:3–7

    Google Scholar 

  • Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Q Sci Rev 26:3298–3310. doi:10.1016/j.quascirev.2007.08.002

    Article  Google Scholar 

  • Frank D, Esper J, Cook E (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi: 10.1029/2007GL030571

  • Friedrichs D, Büntgen U, Esper J, Frank D, Neuwirth B, Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51. doi:10.1093/treephys/tpn003

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567

    Google Scholar 

  • Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Wissenschaftliche Buchgesellschaft, Darmstadt, p 264

    Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol (Amst) 319:83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Klementová E, Litschmann T (2002) Detekcia výskytu sucha v Hurbanove (Detection of drought occurrence at Hurbanovo). In: Antal J. Očakávané globálne zmeny klímy a ich možný dopad na vodný režim, poľné a lesné hospodárstvo. Slovenská akadémia pôdohospodárských vied, Nitra, pp 45–50

  • Klementová E, Litschmann T (2004) The agro-climatic drought in Slovakia in 2003. Meteorol Cas 7:11–16

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego

    Google Scholar 

  • Lapin M, Faško P (1996) Úhrny zrážok na Slovensku a zmeny atmosférickej cirkulácie v období 1874–1993 (precipitation totals in Slovakia and changes in atmospheric circulation in the 1874–1993 period). Meteorol Zpr 49:1–11

    Google Scholar 

  • Lapin M, Faško P (1998) Change of precipitation variability in Slovakia in the 1881–1997 period. In: Proceedings of the 25th international conference on Alpine meteorology, Torino, pp 126–131

  • Lapin M, Pišútová Z (1998) Changes of cyclonicity, air pressure and precipitation totals in the 1901–1995 period. Meteorol Cas 1:15–22

    Google Scholar 

  • Litschmann T, Klementová E (2004) Using Palmer Drought Severity Index to assess drought in the territory of Slovakia. Meteorol Cas 7:67–72

    Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Google Scholar 

  • Mann ME, Lees JM (1996) Robust estimation of background noise and single detection in climatic time series. Clim Change 33:409–445. doi:10.1007/BF00142586

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SB (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. doi:10.1126/science.1082750

    Article  Google Scholar 

  • Oberhuber W, Kofler W (2002) Dendroclimatological spring rainfall reconstruction for an inner Alpine dry valley. Theor Appl Climatol 71:97–106. doi:10.1007/s704-002-8210-8

    Article  Google Scholar 

  • Pauling A, Paeth H (2007) On the variability of return periods of European winter precipitation extremes over the last three centuries. Clim Past 3:65–76

    Article  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2006) 500 years of gridded high resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405. doi:10.1007/s00382-005-0090-8

    Article  Google Scholar 

  • Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Haupt, Bern Stuttgart Wien

  • Rácz L (1999) Climate history of Hungary since 16th century: past, present and future. Centre for Regional Studies of Hungarian Academy of Sciences, Pécs, p 158

    Google Scholar 

  • Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability: observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim Change 79:9–29. doi:10.1007/s10584-006-9061-2

    Article  Google Scholar 

  • Réthly A (1970) Időjárási események és elemi csapások Magyarországon 1701–1800 (weather events and natural extremes in Hungary, 1701–1800). Akadémiai Kiadó, Budapest

    Google Scholar 

  • Réthly A, Simon A (1998–1999): Időjárási események és elemi csapások Magyarországon 1801–1900 (meteorological events and natural disasters in Hungary between 1801–1900), vol I–II. Országos Meteorológiai Szolgálat, Budapest

  • Řezníčková L, Brázdil R, Tolasz R (2007) Meteorological singularities in the Czech Republic in the period 1961–2002. Theor Appl Climatol 88:179–192. doi:10.1007/s00704-006-0253-5

    Article  Google Scholar 

  • Šamaj F, Valovič Š (1982) Priestorové úhrny zrážok na Slovensku (1881–1980) (Areal precipitation totals over Slovakia, 1881–1980). Meteorol Zpr 35:108–112

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for medieval hydroclimate. Q Sci Rev 26:2322–2336. doi:10.1016/j.quascirev.2007.04.020

    Article  Google Scholar 

  • Strömmer E (2003) Klima-Geschichte. Methoden der Rekonstruktion und historische Perspektive Ostösterreich 1700 bis 1830. Franz Deuticke, Wien

    Google Scholar 

  • Team of authors (1967) Katalog povětrnostních situací pro území ČSSR (Catalogue of weather situations for the C.S.S.R. territory). Hydrometeorologický ústav, Praha

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834. doi:10.1175/JCLI3734.1

    Article  Google Scholar 

  • Warren SG, Eastman RM, Hahn CJ (2007) A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J Clim 20:717–738. doi:10.1175/JCLI4031.1

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  • Wilson RJS, Luckman BH, Esper J (2005) A 500 year dendroclimatic reconstruction of spring-summer precipitation from the lower Bavarian Forest region, Germany. Int J Climatol 25:611–630. doi:10.1002/joc.1150

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to R. Glaser, W. Oberhuber, A. Pauling, C. Pfister, R. Wimmer, and R. Wilson for making their original reconstructions available. P. Faško provided average precipitation series and A. Kiss documentary data for Slovakia. A. Verstege measured tree-ring width, R. J. Kaczka supported fieldwork, J. Luterbacher and R. J. S. Wilson contributed via discussion. Supported by the SNF project NCCR-climate (Extract) and the EC project MILLENNIUM (#017008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Büntgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büntgen, U., Brázdil, R., Frank, D. et al. Three centuries of Slovakian drought dynamics. Clim Dyn 35, 315–329 (2010). https://doi.org/10.1007/s00382-009-0563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0563-2

Keywords

Navigation