Climate Dynamics

, Volume 32, Issue 6, pp 799–815 | Cite as

A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum

  • Bette L. Otto-Bliesner
  • Ralph Schneider
  • E. C. Brady
  • M. Kucera
  • A. Abe-Ouchi
  • E. Bard
  • P. Braconnot
  • M. Crucifix
  • C. D. Hewitt
  • M. Kageyama
  • O. Marti
  • A. Paul
  • A. Rosell-Melé
  • C. Waelbroeck
  • S. L. Weber
  • M. Weinelt
  • Y. Yu


Results from multiple model simulations are used to understand the tropical sea surface temperature (SST) response to the reduced greenhouse gas concentrations and large continental ice sheets of the last glacial maximum (LGM). We present LGM simulations from the Paleoclimate Modelling Intercomparison Project, Phase 2 (PMIP2) and compare these simulations to proxy data collated and harmonized within the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface Project (MARGO). Five atmosphere–ocean coupled climate models (AOGCMs) and one coupled model of intermediate complexity have PMIP2 ocean results available for LGM. The models give a range of tropical (defined for this paper as 15°S–15°N) SST cooling of 1.0–2.4°C, comparable to the MARGO estimate of annual cooling of 1.7 ± 1°C. The models simulate greater SST cooling in the tropical Atlantic than tropical Pacific, but interbasin and intrabasin variations of cooling are much smaller than those found in the MARGO reconstruction. The simulated tropical coolings are relatively insensitive to season, a feature also present in the MARGO transferred-based estimates calculated from planktonic foraminiferal assemblages for the Indian and Pacific Oceans. These assemblages indicate seasonality in cooling in the Atlantic basin, with greater cooling in northern summer than northern winter, not captured by the model simulations. Biases in the simulations of the tropical upwelling and thermocline found in the preindustrial control simulations remain for the LGM simulations and are partly responsible for the more homogeneous spatial and temporal LGM tropical cooling simulated by the models. The PMIP2 LGM simulations give estimates for the climate sensitivity parameter of 0.67°–0.83°C per Wm−2, which translates to equilibrium climate sensitivity for doubling of atmospheric CO2 of 2.6–3.1°C.


Last glacial maximum MARGO PMIP Tropical oceans Climate sensitivity 



The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank Mark Stevens for the programming of the figures. We acknowledge the international modeling groups for providing their data for analysis, the Laboratoire des Sciences du Climat et de l’Environnement for collecting and archiving the model data. The PMIP2/MOTIF Data Archve is supported by CEA, CNRS, the EU project MOTIF and the Programme National d’Etude de la Dynamique du Climat. The MARGO working group acknowledges support from IMAGES and the Fundació Abertis, Barcelona, for the final synthesis meeting and the WDC-MARE (PANGAEA) to archive the LGM proxy data set.


  1. Annan JD, Hargreaves JC, Ohgaito R, Abe-Ouchi A, Emori S (2005) Efficiently constraining climate sensitivity with paleoclimate simulations. SOLA 1:181–184. doi: 10.2151/sola.2005-047 CrossRefGoogle Scholar
  2. Ballantyne AP, Lavine M, Crowley TJ, Liu J, Baker PB (2005) Meta-analysis of tropical surface temperatures during the last glacial maximum. Geophys Res Lett 32:L05712. doi: 05710.01029/02004GL021217 CrossRefGoogle Scholar
  3. Bard E (2001) Comparison of alkenone estimates with other paleotemperature proxies. Geochem Geophys Geosys 2:1002 2000GC000050CrossRefGoogle Scholar
  4. Barker S, Cacho I, Benway H, Tachikawa K (2005) Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the last glacial maximum. Quat Sci Rev 24:821–834. doi: 10.1016/j.quascirev.2004.07.016 CrossRefGoogle Scholar
  5. Barrows TT, Juggins S (2005) Sea-surface temperatures around the Australian margin and Indian Ocean during the last glacial maximum. Quat Sci Rev 24:1017–1047. doi: 10.1016/j.quascirev.2004.07.020 CrossRefGoogle Scholar
  6. Bendle J, Rosell-Mele A (2004) Distributions of U37K and U37K′ in the surface waters and sediments of the Nordic Seas: implications for paleoceanography. Geochem Geophys Geosys 5:Q11013. doi: 11010.11029/12004GC000741 CrossRefGoogle Scholar
  7. Berger AL (1978) Long-term variations of caloric insolation resulting from the earth’s orbital elements. Quat Res 9:139–167. doi: 10.1016/0033-5894(78)90064-9 CrossRefGoogle Scholar
  8. Braconnot P, Otto-Bliesner BL, Harrison SP, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes PJ, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277Google Scholar
  9. Chen M-T, Huang C-C, Pflaumann U, Waelbroeck C, Kucera M (2005) Estimating glacial western Pacific sea-surface temperature: methodological overview and data compilation of surface sediment planktic foraminifer faunas. Quat Sci Rev 24:1049–1062. doi: 10.1016/j.quascirev.2004.07.013 CrossRefGoogle Scholar
  10. Claquin T, Roelandt C, Kohfeld KE, Harrison SP, Tegen I, Prentice IC, Balkanski Y, Bergametti G, Hansson M, Mahowald N, Rodhe H, Schulz M (2003) Radiative forcing of climate by ice-age atmospheric dust. Clim Dyn 20:193–202Google Scholar
  11. CLIMAP project members (1981) Seasonal reconstructions of the earth’s surface at the last glacial maximum, Geological Society of America Map and Chart Series MC-36Google Scholar
  12. Conte MH, Weber JC, King LL, Wakeham SG (2001) The alkenone temperature signal in western North Atlantic surface waters. Geochim Cosmochim Acta 65:4275–4287CrossRefGoogle Scholar
  13. Conte MH, Weber JC, Ralph N (1998) Episodic particle flux in the deep Sargasso Sea: an organic geochemical assessment. Deep Sea Res Part I 45:1819–1841CrossRefGoogle Scholar
  14. Crucifix M (2006) Does the last glacial maximum constrain climate sensitivity? Geophys Res Lett 33:L18701. doi: 18710.11029/12006GL027137 CrossRefGoogle Scholar
  15. Dallenbach A, Blunier T, Flückiger J, Stauffer B, Chappellaz J, Raynaud D (2000) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the last glacial and the transition to the holocene. Geophys Res Lett 27:1005–1008CrossRefGoogle Scholar
  16. Deser C, Capotondi A, Saravanan R, Phillips A (2006) Tropical Pacific and Atlantic climate variability in CCSM3. J Clim 19:2451–2481CrossRefGoogle Scholar
  17. Developers K-1 (2004) K-1 coupled model (MIROC) description. In: Hasumi H, Emori S (eds) K-1 Tech. Report No. 1, Center for Climate System Research, University of TokyoGoogle Scholar
  18. Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ et al (1999) Tropical climates at the last glacial maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dyn 15:823–856CrossRefGoogle Scholar
  19. Fleming K et al (1998) Refining the eustatic sea-level curve since the last glacial maximum using far–and intermediate–field sites. Earth Planet Sci Lett 163:327–342CrossRefGoogle Scholar
  20. Flückiger J, Dallenbach A, Blunier T, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285:227–230CrossRefGoogle Scholar
  21. Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391:351–356CrossRefGoogle Scholar
  22. Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  23. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  24. Hargreaves JC, Abe-Ouchi A, Annan JD (2007) Linking glacial and future climates through an ensemble of GCM simulations. Clim Past 3:77–87Google Scholar
  25. Hewitt CD, Broccoli AJ, Mitchell JFB, Stouffer RJ (2001) A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm? Geophys Res Lett 28:1571–1574CrossRefGoogle Scholar
  26. Hewitt CD, Stouffer RJ, Broccoli AJ, Mitchell JFB, Valdes PJ (2003) The effect of ocean dynamics in a coupled GCM simulation of the last glacial maximum. Clim Dyn 20:203–218Google Scholar
  27. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  28. Kim S-J, Flato GM, Boer GJ (2003) A coupled climate model simulation of the last glacial maximum, part 2: approach to equilibrium. Clim Dyn 20:635–661Google Scholar
  29. Kitoh A, Murakami S (2002) Tropical Pacific climate at the mid-Holocene and the last glacial maximum simulated by a coupled ocean-atmosphere general model. Paleoceanography 17. doi: 10.1029/2001PA000724
  30. Kucera M, Rosell-Mele A, Schneider RR, Waelbroeck C, Weinelt M (2005a) Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat Sci Rev 24:813–819CrossRefGoogle Scholar
  31. Kucera M, Weinelt M, Kiefer T, Pflaumann U, Hayes A, Weinelt M, Chen M-T, Mix AC, Barrows TT, Cortijo E, Duprat J, Juggins S, Waelbroeck C (2005b) Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat Sci Rev 24:951–998CrossRefGoogle Scholar
  32. Large WG, Danabasoglu G (2006) Attribution and impacts of upper ocean biases in CCSM3. J Clim 19:2325–2346CrossRefGoogle Scholar
  33. Lea DW (2004) The 100,000 year cycle in tropical SST, greenhouse forcing, and climate sensitivity. J Clim 17:2170–2179CrossRefGoogle Scholar
  34. Lee KE, Schneider R (2005) Alkenone production in the upper 200 m of the Pacific Ocean. Deep Sea Res Part I 52:443–456CrossRefGoogle Scholar
  35. Levitus S, Boyer TP, Conkwright M, Johnson D, O’Brian T, Antonov JI, Stephens C, Gelfield R (1998) Introduction. World Ocean Database 1998. NOAA Atlas NESDIS, vol I, 18:346Google Scholar
  36. Liu Z, Shin S, Otto-Bliesner BL, Kutzbach JE, Brady EC, Lee DE (2002) Tropical cooling at the last glacial maximum and extratropical ocean ventilation. Geophys Res Lett 29. doi: 10.1029/2001GL013938
  37. Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Liu C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111:D10202. doi: 10210.11029/12005JD006653 CrossRefGoogle Scholar
  38. Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: annual mean response. J Clim 4:785–818CrossRefGoogle Scholar
  39. MARGO Project Members (2009) Constraints on the magnitude and patterns of ocean cooling at the last glacial maximum. Nat Geosci (in press)Google Scholar
  40. Marti O et al (2005) The new IPSL climate system model: IPSL-CM4. Note du Pole de Modelisation no 26, Institut Pierre Simon Laplace des Sciences de l’Environnement Global.
  41. McAvaney BJ, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W, Pitman AJ, Weaver AJ, Wood RA, Zhao Z-C (2001) Model evaluation. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 471–525Google Scholar
  42. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  43. Mix AC (2006) Running hot and cold in the eastern equatorial Pacific. Quat Sci Rev 25:1147–1149CrossRefGoogle Scholar
  44. Mix AC, Bard E, Schneider R (2001) Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat Sci Rev 20:627–657CrossRefGoogle Scholar
  45. Mix AC, Morey AE, Pisias NG, Hostetler SW (1999) Foraminiferal faunal estimates of paleotemperature: circumventing the no-analog problem yields cool ice age tropics. Paleoceanography 14:350–359CrossRefGoogle Scholar
  46. Monnin E, Indermuhle A, Dallenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114CrossRefGoogle Scholar
  47. Mueller PJ, Fischer G (2001) A 4 year sediment trap record of alkenones from the filamentous upwelling region off Cape Blanc, NW Africa and a comparison with distributions in underlying sediments. Deep Sea Res Part I 48:1877–1903CrossRefGoogle Scholar
  48. Mueller PJ, Kirst G, Ruhland G, von Storch I, Rosell-Mele A (1998) Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the Eastern South Atlantic and the global ocean (60N–60S). Geochim Cosmochim Acta 62:1757–1772CrossRefGoogle Scholar
  49. Murakami S, Ohgaito R, Abe-Ouchi A, Crucifix M, Otto-Bliesner B (2008) Global scale energy and freshwater balance in glacial climate: a comparison of three PMIP2 LGM simulations. J Clim 21:5008–5033CrossRefGoogle Scholar
  50. Niebler H-S, Arz HW, Donner B, Mulitza S, Patzold J, Wefer G (2003) Sea surface temperatures in the equatorial and South Atlantic Ocean during the last glacial maximum (23–19 ka). Paleoceanography 18:1069. doi: 1010.1029/2003PA000902 CrossRefGoogle Scholar
  51. Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006a) Last glacial maximum and Holocene climate in CCSM3. J Clim 19:2526–2544CrossRefGoogle Scholar
  52. Otto-Bliesner BL, Tomas R, Brady EC, Kothavala Z, Clauzet G, Ammann C (2006b) Climate sensitivity of moderate and low resolution versions of CCSM3 to preindustrial forcings. J Clim 19:2567–2583CrossRefGoogle Scholar
  53. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  54. Peltier WR, Solheim LP (2004) The climate of the Earth at last glacial maximum: statistical equilibrium state and a mode of internal variability. Quat Sci Rev 23:335–357CrossRefGoogle Scholar
  55. Pflaumann U et al (2003) Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18:1065.doi: 1010.1029/2002PA000774
  56. Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the last glacial maximum: comparison of paleoclimate modeling intercomparison project (PMIP) simulations and paleodata. Clim Dyn 15:857–874CrossRefGoogle Scholar
  57. Prahl FG, Popp BN, Karl DM, Sparrow MA (2005) Ecology and biogeochemistry of alkenone production at station ALOHA. Deep Sea Res Part I 52:699–719CrossRefGoogle Scholar
  58. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 881Google Scholar
  59. Rosell-Mele A, Bard E, Emeis K–C, Greiger B, Hewitt CD, Muller PJ, Schneider RR (2004) Sea surface temperature anomalies in the oceans at the LGM estimated from the alkenone-U37K′ index: comparison with GCMs. Geophys Res Lett 31. doi: 10.1029/2003GL018151
  60. Rosenthal Y, Broccoli AJ (2004) In search of paleo-ENSO. Science 304:219–221CrossRefGoogle Scholar
  61. Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27:149–163CrossRefGoogle Scholar
  62. Seager R, Clement AC, Cane MA (2000) Glacial cooling in the tropics: exploring the roles of tropospheric water vapor, surface wind speed, and boundary layer processes. J Atmos Sci 57:2144–2157CrossRefGoogle Scholar
  63. Shin SI, Liu Z, Otto-Bliesner BL, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the last glacial maximum climate using the NCAR CSM. Clim Dyn 20:127–151Google Scholar
  64. Taylor KE, Crucifix M, Braconnot P, Hewitt CD, Doutriaux C, Webb MJ, Broccoli AJ, Mitchell JFB (2007) Estimating shortwave radiative forcing and response in climate models. J Clim 20:2530–2543CrossRefGoogle Scholar
  65. Trenberth KE, Otto-Bliesner BL (2003) Toward integrated reconstruction of past climates. Science 300:589–591CrossRefGoogle Scholar
  66. Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the last glacial maximum. Nature 394:847–853CrossRefGoogle Scholar
  67. Webb RS, Lehman SJ, Rind D, Healy R, Sigman D (1997) Influence of ocean heat transport on the climate of the last glacial maximum. Nature 385:695–699CrossRefGoogle Scholar
  68. Weber SL, Drijhout SS (2007) Stability of the Atlantic meridional overturning circulation in the last glacial maximum climate. Geophys Res Lett 34:L22706. doi: 22710.21029/22007GL031437 CrossRefGoogle Scholar
  69. Weber SL, Drijhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner BL, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim Past 3:51–64CrossRefGoogle Scholar
  70. Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield LK (2000) Timing of the last glacial maximum from observed sea-level minima. Nature 406:713–716CrossRefGoogle Scholar
  71. Yu Y, Zhang Z, Guo Y (2004) Global coupled ocean-atmosphere general circulation models in LASG/IAp. Adv Atmos Sci 21:444–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bette L. Otto-Bliesner
    • 1
  • Ralph Schneider
    • 2
  • E. C. Brady
    • 1
  • M. Kucera
    • 3
  • A. Abe-Ouchi
    • 4
  • E. Bard
    • 5
  • P. Braconnot
    • 6
  • M. Crucifix
    • 7
  • C. D. Hewitt
    • 8
  • M. Kageyama
    • 6
  • O. Marti
    • 6
  • A. Paul
    • 9
  • A. Rosell-Melé
    • 10
  • C. Waelbroeck
    • 6
  • S. L. Weber
    • 11
  • M. Weinelt
    • 2
  • Y. Yu
    • 12
  1. 1.Climate and Global Dynamics DivisionNational Center for Atmospheric ResearchBoulderUSA
  2. 2.Institut für GeowissenschaftenChristian-Albrechts UniversitätKielGermany
  3. 3.Institut für GeowissenschaftenEberhard-Karls Universität TübingenTübingenGermany
  4. 4.Center for Climate System ResearchThe University of TokyoKashiwaJapan
  5. 5.CEREGE, College de France, CNRS, Universite Aix-MarseilleAix-en-ProvenceFrance
  6. 6.Laboratoire des Sciences du Climat et de l’EnvironnementUnité mixte CEA-CNRS-UVSQGif-sur-Yvette CedexFrance
  7. 7.Institut d’Astronomie et de Géophysique Georges LemaîtreUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  8. 8.Met Office Hadley CentreExeterUK
  9. 9.Department of GeosciencesBremen UniversityBremenGermany
  10. 10.ICREA and Institut de Ciencia i Tecnologia AmbientalsUniversitat Autònoma de BarcelonaBarcelonaSpain
  11. 11.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  12. 12.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations