Reconstructing sea level from paleo and projected temperatures 200 to 2100 ad

Abstract

We use a physically plausible four parameter linear response equation to relate 2,000 years of global temperatures and sea level. We estimate likelihood distributions of equation parameters using Monte Carlo inversion, which then allows visualization of past and future sea level scenarios. The model has good predictive power when calibrated on the pre-1990 period and validated against the high rates of sea level rise from the satellite altimetry. Future sea level is projected from intergovernmental panel on climate change (IPCC) temperature scenarios and past sea level from established multi-proxy reconstructions assuming that the established relationship between temperature and sea level holds from 200 to 2100 ad. Over the last 2,000 years minimum sea level (−19 to −26 cm) occurred around 1730 ad, maximum sea level (12–21 cm) around 1150 ad. Sea level 2090–2099 is projected to be 0.9 to 1.3 m for the A1B scenario, with low probability of the rise being within IPCC confidence limits.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bard E et al (1996) Sea level record from Tahiti corals and the timing of deglacial meltwater discharge. Nature 382:241–244. doi:10.1038/382241a0

    Article  Google Scholar 

  2. Bindoff NL, Willebrand J, Artale, Cazenave VA, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  3. Bintanja RSW, van de Wal, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128. doi:10.1038/nature03975

  4. Bradley RS (1999) Paleoclimatology: reconstructing climates of the Quaternary. Harcourt Academic Press, San Diego

    Google Scholar 

  5. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  6. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL, Anisimov OA, Bryan FO, Cazenave A, Dixon KW, Fitzharris BB, Flato GM, Ganopolski A, Gornitz V, Lowe JA, Noda A, Oberhuber JM, O’Farrell SP, Ohmura A, Oppenheimer M, Peltier WR, Raper SCB, Ritz C, Russell GL, Schlosser E, Shum CK, Stocker TF, Stouffer RJ, van de Wal RSW, Voss R, Wiebe EC, Wild M, Wingham DJ, Zwally HJ (2001) Changes in sea level. In: Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 640–693

  7. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1094. doi:10.1038/nature07080

    Article  Google Scholar 

  8. Ekström G, Nettles M, Tsai VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science 311:1756. doi:10.1126/science.1122112]

    Article  Google Scholar 

  9. Gehrels WR et al (2005) Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quat Sci Rev 24:2083–2100. doi:10.1016/j.quascirev.2004.11.016

    Article  Google Scholar 

  10. Gornitz V, Lebedev S, Hansen J (1982) Global sea level trend in the past century. Science 215:1611–1614. doi:10.1126/science.215.4540.1611

    Article  Google Scholar 

  11. Grinsted A, Moore JC, Jevrejeva S (2007) Observational evidence for volcanic impact on sea level and the global water cycle. Proc Natl Acad Sci USA 104:19730–19734. doi:10.1073/pnas.0705825104

    Article  Google Scholar 

  12. Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:024002. doi:10.1088/1748-9326/2/2/024002

    Article  Google Scholar 

  13. Holgate S, Jevrejeva S, Woodworth P, Brewer S (2007) Comment on a semi-empirical approach to projecting future sea-level rise. Science 317:1866b. doi:10.1126/science.1140942

    Article  Google Scholar 

  14. IPCC Summary for Policymakers (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  15. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  16. Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111. doi:10.1029/2005JC003229

  17. Jevrejeva S, Moore JC, Grinsted A (2008a) Relative importance of mass and volume changes to global sea level rise. J Geophys Res 113:D08105. doi:10.1029/2007JD009208

    Article  Google Scholar 

  18. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008b) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi:10.1029/2008GL033611

    Article  Google Scholar 

  19. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi:10.1029/2003RG000143

    Article  Google Scholar 

  20. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. doi:10.1126/science.220.4598.671

    Article  Google Scholar 

  21. Lambeck K, Antonioli F, Purcell A, Silenzi S (2004) Sea-level change along the Italian coast for the past 10,000 yr. Quat Sci Rev 23:1567–1598. doi:10.1016/j.quascirev.2004.02.009

    Article  Google Scholar 

  22. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  23. Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar Geod 27:79–94. doi:10.1080/01490410490465193

    Article  Google Scholar 

  24. Lombard A et al (2007) Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet Sci Lett 254:194–202. doi:10.1016/j.epsl.2006.11.035

    Article  Google Scholar 

  25. Luckman BH, Villalba R (2001) Assessing synchroneity of glacier fluctuations in the western cordillera of the Americas during the last millennium. In: Markgraf V (ed) Interhemispheric climate linkages. Academic Press, New York, pp 119–140

    Google Scholar 

  26. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  27. Miller RG Jr (1968) Jackknifing variances. Ann Math Stat 39:567–582. doi:10.1214/aoms/1177698418

    Article  Google Scholar 

  28. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi:10.1038/nature03265

    Article  Google Scholar 

  29. Mosegaard K, Tarantola A (2002) Probabilistic approach to inverse problems international. In: Lee WHK et al (eds) Handbook of earthquake and engineering seismology, 81A. Academic Press, New York, pp 237–265

    Google Scholar 

  30. Overpeck JT et al (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750. doi:10.1126/science.11151592006

    Article  Google Scholar 

  31. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  32. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(5894):1340–1343. doi:10.1126/science.1159099

    Article  Google Scholar 

  33. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370. doi:10.1126/science.1135456

    Article  Google Scholar 

  34. Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709. doi:10.1126/science.1136843

    Article  Google Scholar 

  35. Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi:10.1038/nature04448

    Article  Google Scholar 

  36. Schmith T, Johansen S, Thejll P (2007) Comment on a semi-empirical approach to projecting future sea-level rise. Science 317:1866c. doi:10.1126/science.1143286

    Article  Google Scholar 

  37. Sivan D et al (2004) Ancient coastal wells of Caesarea Maritima, Israel, an indicator for sea level changes during the last 2000 years. Earth Planet Sci Lett 222:315–330. doi:10.1016/j.epsl.2004.02.007

    Article  Google Scholar 

  38. Svendsen JI, Mangerud J (1997) Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene 7:45–57. doi:10.1177/095968369700700105

    Article  Google Scholar 

  39. van Veen J (1945) Bestaat er een geologische bodemdaling te Amsterdam sedert 1700?, Tijdschrift Koninklijk Nederlandsch Aardrijkskundig Genootschap, 2e reeks, deel LXII

  40. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754. doi:10.1126/science.1123785

    Article  Google Scholar 

  41. Weaver AJ, Saenko OA, Clark PU, Mitrovica JX (2003) Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299(5613):1709–1713. doi: 10.1126/science.1081002

    Google Scholar 

  42. Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20:5889–5910. doi:10.1175/2007JCLI1840.1

    Google Scholar 

Download references

Acknowledgments

Funding was provided by the Finnish Academy. JCM designed the experiments and co-wrote the manuscript with AG and SJ. AG conceived the model and error analysis. All authors discussed the results and commented on the manuscript. Comments from 3 referees were valuable in improving the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aslak Grinsted.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grinsted, A., Moore, J.C. & Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100 ad . Clim Dyn 34, 461–472 (2010). https://doi.org/10.1007/s00382-008-0507-2

Download citation

Keywords

  • Satellite Altimetry
  • Medieval Warm Period
  • Tide Gauge Record
  • Northern Hemisphere Temperature Reconstruction