IPCC global coupled model simulations of the South America monsoon system

Abstract

This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979–2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981–2000) and in a future scenario of global change (A1B) (2081–2100). It is shown that most IPCC models misrepresent the inter-tropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MIROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS’s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Ashrit RG, Douville H, Kumar KR (2003) Response of the Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J Meteorol Soc Jpn 81:779–803

    Article  Google Scholar 

  2. Carril AF, Menéndez CG, Nuñez MN (1997) Climate change scenarios over the South American region: an intercomparison of coupled general atmosphere-ocean circulation models. Int J Climatol 17:1613–1633

    Article  Google Scholar 

  3. Cariolle D, Déqué M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res 91:10825–10846

    Article  Google Scholar 

  4. Cariolle D, Lasserre-Bigory A, Royer J-F et al (1990) A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes. J Geophys Res 95:1883–1898

    Article  Google Scholar 

  5. Carvalho LMV, Jones C, Liebmann B (2002a) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15:2377–2394

    Article  Google Scholar 

  6. Carvalho LMV, Jones C, Silva Dias MAF (2002b) Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. J Geophys Res. doi:10.102/2001JD000745

  7. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: persistence, intensity, form, extreme precipitation and relationships with intraseasonal activity. J Clim 17:88–108

    Article  Google Scholar 

  8. Coelho CAS, Uvo CB, Ambrizzi T (2002) Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71:185–197

    Article  Google Scholar 

  9. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  10. Delworth TL, Broccoli AJ, Rosati A et al (2006) GFDLs CM2 global coupled climate models—Part 1: formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  11. Flato GM, Boer GJ, Lee WG et al (2000) The Canadian centre for climate modelling and analysis global coupled model and its climate. Clim Dyn 16:451–467

    Article  Google Scholar 

  12. Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J Clim 17:47–66

    Article  Google Scholar 

  13. Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27:1295–1298

    Article  Google Scholar 

  14. Gordon HB, Rotstayn LD, Mcgregor JL et al (2002) The CSIRO Mk3 climate system model. CSIRO Atmospheric Research Tech. Available via DIALOG. http://www.dar.csiro.au/publications/gordon_2002a.pdf. Accessed 20 Sep 2006

  15. Grimm AM, Barros VR, Doyle ME (1998) Precipitation anomalies in southern South America associated with El Niño and La Niña events. J Clim 11:2863–2880

    Article  Google Scholar 

  16. Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58

    Article  Google Scholar 

  17. Hasumi H, Emori S (2004) K-1 coupled GCM (MIROC). Available via DIALOG. http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf. Accessed 20 Sep 2006

  18. IPCC (2001): Climate Change (2001) Impacts, adaptation, and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  19. IPCC (2007): Climate Change (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment. Report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  20. Jones C, Carvalho LMV (2002) Active and break phases in the South American monsoon system. J Clim 15:905–914

    Article  Google Scholar 

  21. Kayano MT, Kousky VE (1992) On the monitoring of intraseasonal oscillations. Rev Bras Meteorol 7:593–602 (in Portuguese)

    Google Scholar 

  22. Kharin VV, Zwiers FW, Zhang X et al (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  23. Kodama Y-M (1992) Large-scale common features of subtropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones. J Meteorol Soc Jpn 70:813–835

    Google Scholar 

  24. Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Rev Bras Meteorol 3:217–231

    Google Scholar 

  25. Labraga LC, Lopez M (1997) A comparison of the climate response to increased carbon dioxide simulated by general circulation models with mixed-layer and dynamic ocean representations in the region of South America. Int J Climatol 17:1635–1650

    Article  Google Scholar 

  26. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106

    Article  Google Scholar 

  27. Lenters JD, Cook KH (1999) Summertime precipitation variability over South America: role of the large-scale circulation. Mon Wea Rev 127:409–431

    Article  Google Scholar 

  28. Liebmann B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14:4308–4318

    Article  Google Scholar 

  29. Liebmann B, Jones C, Carvalho LMV (2001) Interannual variability of extreme precipitation events in the State of São Paulo, Brazil. J Clim 14:208–218

    Google Scholar 

  30. Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570

    Article  Google Scholar 

  31. Liebmann B, Camargo SJ, Seth A, Marengo JA et al (2007) Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J Clim 20:2037–2050

    Article  Google Scholar 

  32. Lincoln MA, Marengo JA, Camargo H et al (2005) The onset of the rainy season over southeast Brazil, Part-1. Observational studies. Rev Bras Metor 20:385–394 (in Portuguese)

    Google Scholar 

  33. Magaña V, Ambrizzi T (2005) Dynamics of subtropical vertical motions over the Americas during El Niño Boreal winters. Atmósfera 18:211–235

    Google Scholar 

  34. Marengo JA (2003) Ensemble simulation of regional rainfall features in the CPTEC/COLA atmospheric GCM. Skill and predictability assessment and applications to climate predictions. Clim Dyn 21:459–475

    Google Scholar 

  35. Marengo JA, Liebmann B, Kousky VE et al (2001) Onset and end of the rainy season in the Brazilian Amazon basin. J Clim 14:833–852

    Article  Google Scholar 

  36. Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett. doi:10.1029/2005GL023680

  37. Muza MN, Carvalho LMV (2006) Intraseasonal and interannual variability of extreme precipitation and drought over southern Amazon during the Austral summer. Rev Bras Meteorol 21:29–41 (in Portuguese)

    Google Scholar 

  38. Roeckner E, Bäuml G, Bonaventura L et al (2003) The atmospheric general circulation model ECHAM5. Part 1. Available via DIALOG. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf. Accessed 8 Jan 2008

  39. Salas-Mélia D, Chauvin F, Déqué M et al (2005) Description and validation of the CNRM-CM3 global coupled model. Available via DIALOG. http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf. Accessed 8 Jan 2008

  40. Seth A, Rauscher SA, Camargo SJ (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480

    Article  Google Scholar 

  41. Silva AE, Carvalho LMV (2007) Large-scale index for South America monsoon (LISAM). Atmos Sci Lett. doi:10.1002/asl.150

  42. Silva MES, Carvalho LMV, Dias MAFS et al (2006) Complexity and predictability of daily precipitation in a semi-arid region: an application to Ceará, Brazil. Nonlinear Process Geophys 13:651–659

    Google Scholar 

  43. Sun Y, Solomon S, Dai A (2005) How often does it rain? J Clim 19:916–934

    Article  Google Scholar 

  44. Tebaldi C, Hayhoe K, Arblaster J et al (2007) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  45. Vera C, Higgins W, Ambrizzi T et al (2006a) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  46. Vera C, Silvestri G, Liebmann B (2006b) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett. doi:10.1029/2006GL025759

  47. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, New York

    Google Scholar 

  48. Xie P, Janowiak JE, Arkin PA et al (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214

    Article  Google Scholar 

  49. Yu Y, Zhang X, Guo Y (2004) Global coupled ocean atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455

    Article  Google Scholar 

  50. Yukimoto S, Noda A, Kitoh A et al (2006) Present-day climate and climate sensitivity in the Meteorological Research Institute Coupled GCM, version 2.3 (MRI-CGCM2.3). J Meteorol Soc Jpn 84:333–363

    Article  Google Scholar 

  51. Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Charles Jones and Dr. Humberto R. Rocha and the two anonymous reviewers for their valuable comments and suggestions for this manuscript. We also thank the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modeling (WGCM) for making available the WCRP CMIP3 multi-model dataset. GPCP data were provided by NOAA. The authors greatly acknowledge the financial support of the following agencies: FAPESP (Proc: 02/09289-9); R. J. Bombardi FAPESP (06/53769-6); L. M. V. Carvalho CNPq (Proc: 482447/2007-9 and 474033/2004-0) and NOAA Office of Global Programs (NOAA NA07OAR4310211).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo J. Bombardi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bombardi, R.J., Carvalho, L.M.V. IPCC global coupled model simulations of the South America monsoon system. Clim Dyn 33, 893 (2009). https://doi.org/10.1007/s00382-008-0488-1

Download citation

Keywords

  • South America monsoon system
  • Climate change
  • Global change
  • IPCC global coupled climate models
  • A1B scenario