Climate Dynamics

, Volume 32, Issue 2–3, pp 287–299 | Cite as

Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation



Much research focuses on how the terrestrial biosphere influences climate through changes in surface albedo (reflectivity), stomatal conductance and leaf area index (LAI). By using a fully-coupled GCM (HadCM3LC), our research objective was to induce an increase in the growth of global vegetation to isolate the effect of increased LAI on atmospheric exchange of heat and moisture. Our Control simulation had a mean global net primary production (NPP) of 56.3 GtCyr−1 which is half that of our scenario value of 115.1 GtCyr−1. LAI and latent energy (QE) were simulated to increase globally, except in areas around Antarctica. A highly productive biosphere promotes mid-latitude mean surface cooling of ~2.5°C in the summer, and surface warming of ~1.0°C in the winter. The former response is primarily the result of reduced Bowen ratio (i.e. increased production of QE) in combination with small increases in planetary albedo. Response in winter temperature is likely due to decreased planetary albedo that in turn permits a greater amount of solar radiation to reach the Earth’s surface. Energy balance calculations show that between 75° and 90°N latitude, an additional 2.4 Wm−2 of surface heat must be advected into the region to maintain energy balance, and ultimately causes high northern latitudes to warm by up to 3°C. We postulate that large increases in QE promoted by increased growth of terrestrial vegetation could contribute to greater surface-to-atmosphere exchange and convection. Our high growth simulation shows that convective rainfall substantially increases across three latitudinal bands relative to Control; in the tropics, across the monsoonal belt, and in mid-latitude temperate regions. Our theoretical research has implications for applied climatology; in the modeling of past “hot-house” climates, in explaining the greening of northern latitudes in modern-day times, and for predicting future changes in surface temperature with continued increases in atmospheric CO2.


Vegetation Latent heat Sensible heat Convection Convective rainfall Polar warming Greening Earth Modeling Paleoclimatology Future global change Atmospheric circulation Global energy balance 


  1. Barry L, Craig GC, Thuburn J (2002) Poleward heat transport by the atmospheric heat engine. Nature 415:774–777Google Scholar
  2. Bender M (2003) Climate-biosphere interactions on glacial–interglacial timescales. Global Biogeochem Cycles 17. doi:10.1029/2002GB001932
  3. Beringer J, McIlwaine J, Lynch AH, Chapin FS, Bonan GB (2002) The use of a reduced form model to assess the sensitivity of a land surface model to biotic surface parameters. Clim Dyn 19:455–466. doi:10.1007/s00382-002-0237-9 CrossRefGoogle Scholar
  4. Betts AK (2007) Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J Geophys Res 112. article number D10108Google Scholar
  5. Betts RA (2004) Global vegetation and climate: self-beneficial effects, climate forcings and climate feedbacks. J Phys IV 121:37–60. doi:10.1051/jp4:2004121002 CrossRefGoogle Scholar
  6. Bunn AG, Goetz SJ (2006) Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type and vegetation density. Earth Interact. 10: article no 12–2006Google Scholar
  7. Cox PM (2001) Description of the TRIFFID dynamics global vegetation model. Technical Note 24, Hadley Centre, UK Met OfficeGoogle Scholar
  8. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1998) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203. doi:10.1007/s003820050276 CrossRefGoogle Scholar
  9. Delbart N, Le Toan T, Kergoat L, Fedotova V (2006) Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens Environ 101:52–62. doi:10.1016/j.rse.2005.11.012 CrossRefGoogle Scholar
  10. Dye DG, Tucker CJ (2003) Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys Res Lett 30:1405. doi:10.1029/2002GL016384 CrossRefGoogle Scholar
  11. Essery RLH, Best JJ, Betts RA, Cox PM, Taylor CM (2003) Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J Hydrometeorol 4:530–543. doi:10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2CrossRefGoogle Scholar
  12. Gallimore RG, Kutzbach JE (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381:503–505. doi:10.1038/381503a0 CrossRefGoogle Scholar
  13. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi:10.1007/s003820050010 CrossRefGoogle Scholar
  14. Irannejad P, Henderson-Sellers A, Sharmeen S (2003) Importance of land-surface parameterization for latent heat simulation in global atmospheric models. Geophys Res Lett 30. doi:10.1029/2003GL018044
  15. Kleidon A, Fraedrich K, Kirk E, Lunkeit F (2006) Maximum entropy production and the strength of boundary layer exchange in an atmospheric general circulation model. Geophys Res Lett 33:L06706. doi:10.1029/2005GL025373 CrossRefGoogle Scholar
  16. Kleidon A, Fraedrich K, Heimann M (2000) A green planet versus a desert world: estimating the maximum effect of vegetation on the land surface climate. Clim Change 44:471–493. doi:10.1023/A:1005559518889 CrossRefGoogle Scholar
  17. MacKinnon DJ, Clow GD, Tigges RK, Reynolds RL, Chavez PS (2004) Comparison of aerodynamically and model-derived roughness lengths (zo) over diverse surfaces, central Mojave Desert, California, USA. Geomorphology 63:103–113. doi:10.1016/j.geomorph.2004.03.009 CrossRefGoogle Scholar
  18. Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164:S43–S54. doi:10.1086/368400 CrossRefGoogle Scholar
  19. Notaro M, Vavrus S, Liu ZY (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Clim 20:70–90. doi:10.1175/JCLI3989.1 CrossRefGoogle Scholar
  20. Otto-Bliesner BL, Upchurch GR Jr (1997) Vegetation-induced warming of high-latitude regions during the late-Cretaceous period. Nature 385:804–807. doi:10.1038/385804a0 CrossRefGoogle Scholar
  21. Palmer JR, Totterdell IJ (2001) Production and export in a global ocean ecosystem model. Deep Sea Res 48:1169–1198. doi:10.1016/S0967-0637(00)00080-7 CrossRefGoogle Scholar
  22. Pauluis O, Held IM (2002) Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: latent heat transport and moist processes. J Atmos Sci 59:140–149. doi:10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2CrossRefGoogle Scholar
  23. Peisker M, Henderson SA (1992) Carbon: terrestrial C4 plants. Plant Cell Environ 15:987–1004. doi:10.1111/j.1365-3040.1992.tb01651.x CrossRefGoogle Scholar
  24. Piao SL, Friedlingstein P, Ciais P, Zhou LM, Chen AP (2006) Effect of climate and CO2 changes on the greening of the northern hemisphere over the past two decades. Geophys Res Lett 33:L23402. doi:10.1029/2006GL028205 CrossRefGoogle Scholar
  25. Rooney GG, Claxton BM (2006) Comparison of the Met Office’s Surface Exchange Scheme, MOSES, against field observations. Q J R Meteorol Soc 132:425–446. doi:10.1256/qj.04.95 CrossRefGoogle Scholar
  26. Russell GL, Rind D (1999) Response to CO2 transient increase in the GISS coupled model: regional coolings in a warming climate. J Clim 12:531–539. doi:10.1175/1520-0442(1999)012<0531:RTCTII>2.0.CO;2CrossRefGoogle Scholar
  27. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370. doi:10.1111/j.1469-8137.2004.00974.x CrossRefGoogle Scholar
  28. Schmidt GA, Mysak LA (1996) Can increased poleward oceanic heat flux explain the warm Cretaceous climate? Paleoceanography 11:579–593. doi:10.1029/96PA01851 CrossRefGoogle Scholar
  29. Sewall JO, Sloan LC, Huber M, Wing SL (2000) Climate sensitivity to changes in land surface characteristics. Global Planet Change 26:445–465. doi:10.1016/S0921-8181(00)00056-4 CrossRefGoogle Scholar
  30. Shutova E, Wielgolaski FE, Karlsen SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flo L, Hogda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51:155–166. doi:10.1007/s00484-006-0042-y CrossRefGoogle Scholar
  31. Sitch S, McGuire AD, Kimbass J, Gedney N, Gamon J, Engstrom R, Wolf A, Zhuang Q, Clein J, McDonald KC (2007) Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling. Ecol Appl 17:213–234. doi:10.1890/1051-0761(2007)017[0213:ATCBOC]2.0.CO;2 CrossRefGoogle Scholar
  32. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2CrossRefGoogle Scholar
  33. von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207. doi:10.1023/A:1025830019591 CrossRefGoogle Scholar
  34. Xue Y, Juang HMH, Li WP, Prince S, DeFries R, Jiao Y, Vasic R (2004) Role of land-surface processes in monsoon development: east Asia and west Africa. J Geophys Res 109. doi:10.1029/2003JD003556
  35. Zhang J, Walsh JE (2006) Thermodynamic and hydrological impacts of increasing greenness in northern latitudes. J Hydrometeorol 7:1147–1163. doi:10.1175/JHM535.1 CrossRefGoogle Scholar
  36. Zhou L, Kaufmann RK, Tian Y, Myneni RB, Tucker CJ (2003) Relation between inter-annual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res Atmos 108:4004. doi:10.1029/2002JD002510 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of GeographyUniversity of TorontoTorontoCanada
  2. 2.Met OfficeHadley Centre for Climate Prediction and ResearchExeterUK
  3. 3.Centre for Ecology and HydrologyDorsetUK

Personalised recommendations