Climate Dynamics

, Volume 32, Issue 2–3, pp 189–203 | Cite as

Detection of external influence on trends of atmospheric storminess and northern oceans wave heights

  • Xiaolan L. Wang
  • Val R. Swail
  • Francis W. Zwiers
  • Xuebin Zhang
  • Yang Feng


The atmospheric storminess as inferred from geostrophic wind energy and ocean wave heights have increased in boreal winter over the past half century in the high-latitudes of the northern hemisphere (especially the northeast North Atlantic), and have decreased in more southerly northern latitudes. This study shows that these trend patterns contain a detectable response to anthropogenic and natural forcing combined. The effect of external influence is found to be strongest in the winter hemisphere, that is, in the northern hemisphere in January–March and in the southern hemisphere in July–September. However, the simulated response to anthropogenic and natural forcing combined, which was obtained directly from climate models in the case of geostrophic wind energy and indirectly via an empirical downscaling procedure in the case of ocean wave heights, is significantly weaker than the magnitude of the observed changes in these parameters.


Atmospheric storminess Ocean wave heights Climate extremes Non-stationary generalized extreme value analysis Trend analysis Natural and anthropogenic forcing Detection analysis Climate change 


  1. Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Long-term variations of the storm climate over NW Europe. Glob Atmos Ocean Syst 6:97–120Google Scholar
  2. Alexandersson H, Tuomenvirta H, Schmith T, Iden K (2000) Trends of storms in NW Europe derived form an updated pressure data set. Clim Res 14:71–73CrossRefGoogle Scholar
  3. Allan R, Ansell TL (2006) A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J Clim 19(22):5816–5842CrossRefGoogle Scholar
  4. Allen MR, Stott PA (2003) Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim Dyn 21:477–491CrossRefGoogle Scholar
  5. Bacon S, Carter DJT (1991) Wave climate changes in the North Atlantic and North Sea. Int J Climatol 11:545–558CrossRefGoogle Scholar
  6. Barnett TP, Pierce D, AchutaRao K, Santer B, Gleicker P (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287CrossRefGoogle Scholar
  7. Blackmon ML (1976) A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere. J Atmos Sci 33:1607–1623CrossRefGoogle Scholar
  8. Caires S, Sterl A, Komen G, Swail V (2004a) The Web-based KNMI/ERA-40 global wave climatology atlas. WMO Bull 53(2):142–146Google Scholar
  9. Caires S, Sterl A, Bidlot J-R, Graham N, Swail V (2004b) Intercomparison of different wind-wave reanalyses. J Clim 17(10):1893–1913CrossRefGoogle Scholar
  10. Cox AT, Swail VR (2001) A global wave hindcast over the period 1958–1997: validation and climate assessment. J Geophys Res 106(C2):2313–2329CrossRefGoogle Scholar
  11. Gillett NP, Zwiers FW, Weaver AJ, Stott PA (2003) Detection of human influence on sea-level pressure. Nature 422:292–294CrossRefGoogle Scholar
  12. Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with multi-model ensemble. Geophys Res Lett 32:L19714. doi:10.1029/2005GL023640
  13. Gulev SK, Zolina O, Grigoriev S (2001) Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Clim Dyn 17:795–809CrossRefGoogle Scholar
  14. Hasselmann K (1993) Optimal fingerprint for detection of time dependent climate change. J Clim 6:1957–1971CrossRefGoogle Scholar
  15. Hegerl G, Hasselmann K, Cubasch U, Mitchell JFB, Roeckner E, Voss R, Waszkewitz J (1997) On multi-fingerprint detection and attribution of greenhouse gas and aerosol forced climate change. Clim Dyn 13:613–634CrossRefGoogle Scholar
  16. Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 944Google Scholar
  17. Hoskins BJ, Hodges KI (2002) New Perspectives on the Northern Hemisphere Winter Storm Tracks. J Atmos Sci 59:1041–1061CrossRefGoogle Scholar
  18. IDAG (International ad hoc Dectection and Attribution Group) (2005) Detecting and attributing external influences on the climate system: A review of recent advances. J Clim 18:1291–1314CrossRefGoogle Scholar
  19. Jones GS, Tett SFB, Stott PA (2003) Causes of atmospheric temperature change 1960–2000: A combined attribution analysis. Geophys Res Lett 30:1228. doi:10.1029/2002GL016377 Google Scholar
  20. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471Google Scholar
  21. Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-Rom and documentation. Bull Am Meteor Soc 82:247–267Google Scholar
  22. Matulla C, Schoener W, Alexandersson H, von Stroch H, Wang XL (2008) European Storminess: late 19th century to present. Clim Dyn 31:125–130. doi:10.1007/s00382-007-0333-y
  23. Meehl GA et al (2007) Global climate projections. In: Solomon SC et al (eds) limate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 944Google Scholar
  24. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios (SRES). Cambridge University Press, New York, p 599Google Scholar
  25. Pettersen S (1956) Weather analysis and forecasting, vol 1, 2nd edn. McGraw-Hill, NY, p 422Google Scholar
  26. Santer BD et al (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483Google Scholar
  27. Solomon S et al (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 944Google Scholar
  28. Stott PA (2003) Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys Res Lett 30:1724. doi:10.1029/2003GL017324 Google Scholar
  29. Tett SFB, Stott PA, Aleen MR, Ingram W, Mitchell J (1999) Causes of twentieth-century temperature change near the Earth’s surface. Nature 339:569–572CrossRefGoogle Scholar
  30. Uppala SM et al (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012Google Scholar
  31. Wang XLL, Swail VR (2001) Changes of extreme wave heights in northern hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221CrossRefGoogle Scholar
  32. Wang XLL, Swail VR (2002) Trends of Atlantic wave extremes as simulated in a 40-year wave hindcast using kinematically reanalyzed wind fields. J Clim 15:1020–1035CrossRefGoogle Scholar
  33. Wang XLL, Swail VR (2006a) Historical and possible future changes of wave heights in northern hemisphere oceans. Atmosphere Ocean Interactions, vol 2. In: Perrie W (ed) Advances in fluid mechanics Series vol 39, Wessex Institute of Technology Press, Southampton, p 240Google Scholar
  34. Wang XLL, Swail VR (2006b) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dyn 26:109–126. doi:10.1007/s00382-005-0080-x Google Scholar
  35. Wang XLL, Swail VR, Zwiers FW (2006) Climatology and changes of extra-tropical cyclone activity: comparison of ERA-40 with NCEP/NCAR Reanalysis for 1958–2001. J Clim 19:3145–3166. doi:10.1175/JCLI3781.1 Google Scholar
  36. WASA Group (1998) Changing waves and storms in the Northeast Atlantic? Bull Am Meteorol Soc 79:741–760CrossRefGoogle Scholar
  37. Whitaker LM, Horn LH (1984) Northern Hemisphere extra-tropical cyclone activity for four midseason months. J Climotol 4:297–310CrossRefGoogle Scholar
  38. Zhang X, Zwiers FW, Stott PA (2006) Multi-model multi-signal climate change detection at regional scale. J Clim 19:4294–4307CrossRefGoogle Scholar
  39. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465CrossRefGoogle Scholar
  40. Zwiers FW, Zhang X (2003) Towards regional scale climate change detection. J Clim 16:793–797CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Xiaolan L. Wang
    • 1
  • Val R. Swail
    • 1
  • Francis W. Zwiers
    • 1
  • Xuebin Zhang
    • 1
  • Yang Feng
    • 1
  1. 1.Climate Research Division, Atmospheric Science and Technology Directorate, STBEnvironment CanadaTorontoCanada

Personalised recommendations