Climate Dynamics

, Volume 32, Issue 7–8, pp 1107–1117 | Cite as

Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians

  • Ionel PopaEmail author
  • Zoltán Kern


The first 1,000 year long Carpathian tree-ring width chronology was established based on living and subfossil stone pine (Pinus cembra L.) samples from an upper timberline forest located in Calimani Mts. (Romania). Tree-ring data were standardized using the regional curve standardization method in order to preserve the low and medium frequency climate signals. The de-trended index strongly correlates with summer mean temperature both at annual and decadal scales. The Calimani summer mean temperature anomalies were reconstructed for the period ad 1163-2005 applying the rescaling method. This new climate proxy from the Carpathians shows similar fluctuations to other North Hemispheric temperature reconstructions, but with periods of distinct differences. The fingerprint of Little Ice Age in the Calimani area is visible between ad 1370 and 1630 followed by lagged cold decades in ad 1820 and 1840. The recent warming is evident only after the 1980s in our reconstruction.


Pinus cembra L. Dendroclimatology Paleoclimate proxy Timberline Eastern Europe 



Ionel Popa was supported by the IDEII program, project ID65. Zoltan Kern was partially funded by the Hungarian Science Foundation (OTKA) T 43666 and K67583. The RO-37/2005 bilateral cooperation financed the travel costs. Special thanks to Jonathan G.A. Lageard and Eva Bugya for the English revision of the manuscript. Also thanks for David Frank and Ulf Büntgen for providing their temperature reconstructions. We thank Olivier Bouriaud and two anonymous reviewers for helpful comments.


  1. Becker M, Bert GD, Bouchon J, Dupouey JL, Picard JF, Ulrich E (1995) Long-term changes in forest productivity in northeastern France: the dendro-ecological approach. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition ejects in the French mountains. Springer, Berlin, pp 143–156Google Scholar
  2. Beniston M (2002) Climate modeling at various spatial and temporal scales: where can dendrochronology help? Dendrochronologia 20:117–131. doi: 10.1078/1125-7865-00012 CrossRefGoogle Scholar
  3. Bradley RS, Jones PD (1993) Litte Ice Age summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3(4):367–376. doi: 10.1177/095968369300300409 CrossRefGoogle Scholar
  4. Brázdil R, Pfister C, Wanner H, Storch H, Luterbacher J (2005) Historical climatology in Europe—The State of the Art. Clim Change 70:363–430. doi: 10.1007/s10584-005-5924-1 CrossRefGoogle Scholar
  5. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105. doi: 10.1016/S0277-3791(99)00056-6 CrossRefGoogle Scholar
  6. Briffa KR, Jones PD (1990) Basic chronology statistics and assesment. In: Cook E, Kairiukstis L (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, pp 137–152Google Scholar
  7. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W et al (1992) Fennoscandinavian summers from ad 500: temperature changes on short and long timescales. Clim Dyn 7:111–119. doi: 10.1007/BF00211153 CrossRefGoogle Scholar
  8. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature 393:450–455. doi: 10.1038/30943 CrossRefGoogle Scholar
  9. Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree-rings: a review. Glob Planet Change 40:11–26. doi: 10.1016/S0921-8181(03)00095-X CrossRefGoogle Scholar
  10. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the northern Hemisphere: part 2, spatio-temporal variability and associated climate patterns. Holocene 12:759–789. doi: 10.1191/0959683602hl588rp CrossRefGoogle Scholar
  11. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153. doi: 10.1007/s00382-005-0028-1 CrossRefGoogle Scholar
  12. Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth/climate response of a multi-species tree-ring network in the western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:687–702Google Scholar
  13. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Alpine summer temperature variations, ad 755–2004. J Clim 19:5606–5623. doi: 10.1175/JCLI3917.1 CrossRefGoogle Scholar
  14. Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083. doi: 10.1111/j.1365-2745.2007.01281.x CrossRefGoogle Scholar
  15. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi: 10.1002/joc.1216 CrossRefGoogle Scholar
  16. Cook ER (1985) A time series analysis approach to tree-ring standardization, Ph.D. Dissertation, University of Arizona, Tucson.Google Scholar
  17. Cook ER, Krusic PJ (2006) ARSTAN4.1b_XP.
  18. Cook ER, Kairiukstis L (eds) (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer, p 408 Google Scholar
  19. D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi: 10.1029/2005JD006352 CrossRefGoogle Scholar
  20. Dai J, Mosley-Thompson E, Thompson LG (1991) Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora. J Geophys Res 96:17361–17366. doi: 10.1029/91JD01634 CrossRefGoogle Scholar
  21. Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185. doi: 10.2307/2289144 CrossRefGoogle Scholar
  22. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree Ring Res 59:81–98Google Scholar
  23. Esper J, Cook ER, Schweingruber FH (2002) Low–frequency signals in long tree–ring Chronologies for reconstructing past temperature variability. Science 295:2250–2252. doi: 10.1126/science.1066208 CrossRefGoogle Scholar
  24. Esper J, Frank DC, Wilson RJS, Briffa KR (2005a) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 31. doi: 10.1029/2004GLO21236
  25. Esper J, Wilson RJS, Frank DC, Moberg A, Wanner H, Luterbacher J (2005b) Climate: past ranges and future changes. Quat Sci Rev 24:2164–2166. doi: 10.1016/j.quascirev.2005.07.001 CrossRefGoogle Scholar
  26. Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi: 10.1029/2007GL030571
  27. Frank DC, Esper J (2005a) Characterization and climate response patterns of a high elevation, multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121. doi: 10.1016/j.dendro.2005.02.004 CrossRefGoogle Scholar
  28. Frank DC, Esper J (2005b) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454. doi: 10.1002/joc.1210 CrossRefGoogle Scholar
  29. Fritts HC (1976) Tree-ring and climate. Academic Press, London, p 567Google Scholar
  30. Grissino-Mayer HD (1997) Computer assisted independent observer verification of tree-ring measurements. Tree Ring Bull 54:29–41Google Scholar
  31. Guiot J, Nicault A, Rathgeber C, Edouard JL, Guibal F, Pichard G et al (2005) Last-millennium summer-temperature variations in western Europe based on proxy data. Holocene 15:489–500. doi: 10.1191/0959683605hl819rp CrossRefGoogle Scholar
  32. Höhn M (2001) Ecological, morphometrical and diversity studies on Pinus cembra populations in the Kelemen-Mountain (East Carpathians). Kanitzia 9:59–72Google Scholar
  33. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree Ring Bull 43:69–75Google Scholar
  34. Holmes RL (1990) Dendrochronology Program Library—User’s Manual. University of Arizona, TucsonGoogle Scholar
  35. Hunt BG (2006) The Medieval Warm Period, the Little Ice Age and simulated climatic variability. Clim Dyn 27:677–694. doi: 10.1007/s00382-006-0153-5 CrossRefGoogle Scholar
  36. IPCC (2007) Climate Change 2007. The Physical Science Basis, p 996.Google Scholar
  37. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor v, Miller H.L (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Jones PD, Lister D (2004) The development of monthly temperature series for Scotland and northern Ireland. Int J Climatol 24:569–590. doi: 10.1002/joc.1017 CrossRefGoogle Scholar
  39. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi: 10.1029/2003RG000143
  40. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223. doi: 10.1175/1520-0442(2003)016 CrossRefGoogle Scholar
  41. Kern Z, Popa I. Changes of frost damage and treeline advance for Swiss stone pine in the Calimani Mts (eastern Carpathians, Romania). Acta Silvatica Lignaria Hung (in press).Google Scholar
  42. Körner C (1998) Worldwide positions of alpine treelines and their causes. In: Beniston M, Innes JL (eds) The impacts of climate variability on forests. Springer,Berlin, pp 221–239CrossRefGoogle Scholar
  43. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732Google Scholar
  44. LaMarche VC (1974) Paleoclimatic inferences from long tree-ring records. Science 183:1043–1048. doi: 10.1126/science.183.4129.1043 CrossRefGoogle Scholar
  45. Lamb HH (1965) The early Medieval Warm Epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37. doi: 10.1016/0031-0182(65)90004-0 CrossRefGoogle Scholar
  46. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. doi: 10.1126/science.1093877 CrossRefGoogle Scholar
  47. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787. doi: 10.1038/33859 CrossRefGoogle Scholar
  48. Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere Temperature during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 26:759–762. doi: 10.1029/1999GL900070 CrossRefGoogle Scholar
  49. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30(15):1820. doi: 10.1029/2003GL017814 Google Scholar
  50. McIntryre S, McKitrick R (2003) Corrections to the Mann et al. (1998). Proxy-data based and northern hemispheric average temperature series. Energy and environment. 14:751–771. doi: 10.1260/095830503322793632
  51. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to ad 1480. Geophys Res Lett 34:L20705. doi: 10.1029/2007GL031381 CrossRefGoogle Scholar
  52. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  53. Mosley-Thompson E, Mashiotta TA, Thompson L (2003) High resolution ice core records of Late Holocene volcanism: current and future contributions from the Greenland PARCA cores. Volcanism and the earth’s atmosphere. Geophys Monogr 139:153–164Google Scholar
  54. Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200. doi: 10.1046/j.1469-8137.1998.00183.x CrossRefGoogle Scholar
  55. Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301Google Scholar
  56. Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259. doi: 10.1191/0309133303pp379ra CrossRefGoogle Scholar
  57. Pfister C, Brázdil R, Barriendos M (2002) Reconstructing past climate and natural disasters in Europe using documentary evidence. PAGES News 10(3):6–8Google Scholar
  58. Popa I (2004) Fundamente metodologice şi applicaţii de dendrochronologie. Editura Tehnică Silvică, p 200Google Scholar
  59. Popa I (2005a) Dendroclimatological research at Norway spruce (Picea abies (L.) Karst) and Swiss stone pine (Pinus cembra L.) from Ronda Mountains. Proc Romanian Acad Ser B 7:65–70Google Scholar
  60. Popa I (2005b) Cu privire la reconstituirea dinamicii istorice a regimului termic al lunii iunie în Munţii Rodnei. Rev Padurilor 4:21–28Google Scholar
  61. Popa I, Kern Z, Nagy B (2006) Frost ring: a biological indicator of widespread freezing days, and 1876 ad as a case study from the eastern Carpathians. Proc Romanian Acad Ser B 8:55–61Google Scholar
  62. Rapp D (2008) Assessing climate change. Temperatures, solar radiation and heat balance. Springer, 374 pGoogle Scholar
  63. Rinntech (2005) TSAP User reference. 110 pGoogle Scholar
  64. Rutherford S, Mann ME, Osborn TJ, Bradley RS, Briffa KR, Hughes MK et al (2005) Proxy-based northern hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season and target domain. J Clim 18:2308–2329. doi: 10.1175/JCLI3351.1 CrossRefGoogle Scholar
  65. Saurer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R (2004) First detection of nitrogen from NOX in tree-rings: A 15 N/14 N study near a motorway. Atmos Environ 38:2779–2787. doi: 10.1016/j.atmosenv.2004.02.037 CrossRefGoogle Scholar
  66. Spiecker H, Mielikainen K, Kohl M, Skovsgaard JP (1996) Growth trends in European forests. European Forest Institute, Springer, Berlin, p 372Google Scholar
  67. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198. doi: 10.1126/science.224.4654.1191 CrossRefGoogle Scholar
  68. Stuiver M, Braziunas TF (1989) Atmospheric C-14 and century scale solar oscillations. Nature 338:405–408. doi: 10.1038/338405a0 CrossRefGoogle Scholar
  69. Tranquillini W (1979) Physiological ecology of the Alpine Timberline. Ecological studies, vol 31. Springer, BerlinGoogle Scholar
  70. Urbinati C, Carrer M, Sodiro S (1997) Dendroclimatic response variability of Pinus cembra L. in upper timberline forests of Italian eastern Alps. Dendrochronologia 15:101–117Google Scholar
  71. Wagner S, Zorita E (2005) The influence of volcanic, solar and CO2 forcing on the temperature in the Dalton Minimum (1790–1830) a model study. Clim Dyn 25:205–218. doi: 10.1007/s00382-005-0029-0 CrossRefGoogle Scholar
  72. Weiser G, Tausz M (eds) (2007) Trees at their upper limit. Treelife limitation at the Alpine timberline. Plant ecophysiology series. Springer, Berlin, p 233Google Scholar
  73. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar
  74. WMO (1989) Calculation of monthly and annual 30 year standard normals. WCDP No. 10. WMO-TD/No. 341, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Research Station for Norway Spruce SilvicultureForest Research and Management InstituteCâmpulung MoldovenescRomania
  2. 2.Institute for Geochemical ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations