Climate Dynamics

, Volume 32, Issue 7–8, pp 1035–1054

Response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions

Article

Abstract

The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR’s CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both the CLIMAP SST reconstruction and a modification thereto with reconstructions of glacial ice sheets and land masks. The individual components of the boundary conditions are added first one at a time and, finally, together. These steps show the atmospheric circulation to respond approximately linearly to the boundary condition changes, and the full glacial change may thus be decomposed into contributions from SST and topography changes, respectively. We find that using the CLIMAP SST reconstruction leads to a shift from Atlantic toward Pacific source regions not found with the modified reconstruction having cooler tropics and less sea ice. The occurrence of such a shift depends chiefly on the SST reconstruction and not on the existence of the large northern hemisphere glacial ice sheets. The influence of these circulation changes on important factors for ice core interpretation such as precipitation seasonality, condensation temperatures and source temperatures are assessed.

References

  1. Alexeev VA, Langen PL, Bates JR (2005) Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim Dyn. doi:10.1007/s00382-005-0018-3
  2. Armengaud A, Koster RD, Jouzel J, Ciais P (1998) Deuterium excess in Greenland snow: analysis with simple and complex models. J Geophys Res 103:8947–8953CrossRefGoogle Scholar
  3. Bonan GB (1998) The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J Climate 11:1307–1326CrossRefGoogle Scholar
  4. Bromwich DH, Toracinta ER, Wei H, Oglesby RJ, Fastook JL, Hughes TJ (2004) Polar MM5 simulations of the winter climate of the Laurentide ice sheet at the LGM. J Clim 17:3415–3433CrossRefGoogle Scholar
  5. Byrkjedal Ø, Kvamstø NG, Meland M, Jansen E (2006) Sensitivity of last glacial maximum climate to sea ice conditions in the Nordic Seas. Clim Dyn 26(5):473–487CrossRefGoogle Scholar
  6. Cappelen J, Jørgensen BV, Laursen EV, Stannius LS, Thomsen RS (2001) The observed climate of Greenland, 1958–99—with climatological standard normals, 1961–90. Technical Report 00-18, Danish Meteorological InstituteGoogle Scholar
  7. Charles CD, Rind D, Jouzel J, Koster RD, Fairbanks RG (1994) Glacial–interglacial changes in moisture sources for Greenland—influences on the ice core record of climate. Science 263:508–511CrossRefGoogle Scholar
  8. CLIMAP (1981) Seasonal reconstruction of the Earth’s surface at the last glacial maximum. Map and Chart Series 36. Technical report, Geological Society of AmericaGoogle Scholar
  9. CLIMAP (1994) CLIMAP 18K Database. IGBP PAGES/World Data Center—a for Paleoclimatology Data Contribution Series no. 94-001. Technical report, NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  10. Cole JE, Rind D, Webb RS, Jouzel J, Healy R (1999) Climatic controls on interannual variability of precipitation δ18O: simulated influence of temperature, precipitation amount, and vapor source region. J Geophys Res 104(D12):14223–14235CrossRefGoogle Scholar
  11. Cook KH, Held IM (1988) Stationary waves and the ice age climate. J Clim 1:807–819CrossRefGoogle Scholar
  12. Crowley TJ (2000) CLIMAP SSTs re-visited. Clim Dyn 16:241–255CrossRefGoogle Scholar
  13. Crucifix M, Braconnot P, Harrison SP, Otto-Bliesner B (2005) Second phase of Paleoclimate Modeling Intercomparison Project. EOS 86(28):264CrossRefGoogle Scholar
  14. Dansgaard W, Johnsen SJ (1969) A flow model and a time scale for the ice core from Camp Century, Greenland. J Glaciol 8:215–223Google Scholar
  15. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdóttir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  16. Delaygue G, Masson V, Jouzel J, Koster RD, Healy RJ (2000) The origin of Antarctic precipitation: a modelling approach. Tellus 52B:19–36Google Scholar
  17. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405CrossRefGoogle Scholar
  18. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  19. Hostetler S, Pisias N, Mix A (2006) Sensitivity of last glacial maximum climate to uncertainties in tropical and subtropical ocean temperatures. Quat Sci Rev 25:1168–1185CrossRefGoogle Scholar
  20. Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389CrossRefGoogle Scholar
  21. Johnsen SJ, Dansgaard W (1992) On flow model dating of stable isotope records from Greenland ice cores. NATO ASI Ser I 2:13–24Google Scholar
  22. Johnsen SJ, Vinther BM (2007) Stable isotope records from Greenland ice cores. Encyclopedia of Quarternary Sciences, pp 3–29. doi:10.1016/B0-444-52747-8/00345-8
  23. Johnsen SJ, Dansgaard W, White JWC (1989) The origin of Arctic precipitation under present and glacial conditions. Tellus 41B:452–468Google Scholar
  24. Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992a) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313CrossRefGoogle Scholar
  25. Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup NS, Hansson M, Jonsson P, Steffensen JP, Sveinbjörnsdóttir AE (1992b) A deep ice core from east Greenland. Medd Grønland 29:3–29Google Scholar
  26. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdóttir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16(4):299–307CrossRefGoogle Scholar
  27. Joussaume S, Taylor KE (2000) The Paleoclimate Modeling Intercomparison Project. In: Braconnot P (ed) Proceedings of the third PMIP workshop, WCRP-111, WMO/TD-1007, pp 9–25Google Scholar
  28. Joussaume S, Sadourny R, Vignal C (1986) Origin of precipitating water in a numerical simulation of the July climate. Ocean Air Interact 1(1):43–56Google Scholar
  29. Kageyama M, Valdes PJ, Ramstein G, Hewitt C, Wyputta U (1999) Northern Hemisphere storm tracks in present day last glacial maximum climate simulations: a comparison of the European PMIP models. J Clim 12:742–760CrossRefGoogle Scholar
  30. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb B P, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). Technical Report TN-420, CGD, National Center for Atmospheric ResearchGoogle Scholar
  31. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson D L, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Clim 11:1131–1149CrossRefGoogle Scholar
  32. Koster R, Jouzel J, Suozzo R, Russell G, Broecker W, Rind D, Eagleson P (1986) Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys Res Lett 13(1):121–124CrossRefGoogle Scholar
  33. Koster RD, Jouzel J, Suozzo RJ, Russell GL (1992) Origin of July Antarctic precipitation and its influence on deuterium content: a GCM analysis. Clim Dyn 7:195–203CrossRefGoogle Scholar
  34. Kothavala Z, Oglesby RJ, Saltzman B (1999) Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2. Geophys Res Lett 26(2):209–212CrossRefGoogle Scholar
  35. Krinner G, Genthon C (1998) GCM simulations of the last glacial maximum surface climate of Greenland and Antarctica. Clim Dyn 14:741–758CrossRefGoogle Scholar
  36. Krinner G, Werner M (2003) Impact of precipitation seasonality changes on isotopic signals in polar ice cores: a multi-model analysis. Earth Planet Sci Lett 216:525–538CrossRefGoogle Scholar
  37. Krinner G, Genthon C, Jouzel J (1997) GCM analysis of local influences on ice core δ signals. Geophys Res Lett 24:2825–2828CrossRefGoogle Scholar
  38. Langway CC, Oeschger H, Dansgaard W (1985) The Greenland ice sheet program in perspective. Greenland Ice Cores: geophysics, geochemimistry and environment. AGU Monogr 33:1–8Google Scholar
  39. Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys Res Lett 32:L19702. doi:10.1029/2005GL023492 CrossRefGoogle Scholar
  40. Loutre M-F, Paillard D, Vimeux F, Cortijo E (2004) Does mean annual insolation have the potential to influence the climate?. Earth Planet Sci Lett 221:1–14CrossRefGoogle Scholar
  41. Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinsbjornsdottir A, Fuhrer K (2005a) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309:118–121CrossRefGoogle Scholar
  42. Masson-Delmotte V, Landais A, Stievenard M, Cattani O, Falourd S, Jouzel J, Johnsen SJ, Dahl-Jensen D, Sveinsbjornsdottir A, White JWC, Popp T, Fischer H (2005b) Holocene climatic changes in Greenland: different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. J Geophys Res 110. doi:10.1029/2004JD005575
  43. Mayewski PA, Meeker LD, Whitlow SI, Twickler MS, Morrison MC, Bloomfield P, Bond GC, Alley RB, Gow AJ, Grootes PM, Meese DA, Ram M, Taylor KC, Wumkes MA (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263:1747–1751CrossRefGoogle Scholar
  44. Meland MY, Jansen E, Elderfield H (2005) Constraints on SST estimates for the northern North Atlantic/Nordic Seas during the LGM. Quat Sci Rev 24:835–852CrossRefGoogle Scholar
  45. NGRIP members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 432:147–151Google Scholar
  46. Noone D, Simmonds I (2002) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res 107. doi:10.1029/2002JD002262
  47. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  48. Rind D (1987) Components of the ice age circulation. J Geophys Res 92(D4):4241–4281CrossRefGoogle Scholar
  49. Rodgers KB, Lohmann G, Lorenz S, Schneider R, Henderson GM (2003) A tropical mechanism for Northern Hemisphere deglaciation. Geochem Geophys Geosyst 4(5):1046. doi:10.1029/2003GC000508 CrossRefGoogle Scholar
  50. Roe GH, Lindzen RS (2001) The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J Clim14:1450–1465CrossRefGoogle Scholar
  51. Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J Geophys Res 113(D10103). doi:10.1029/2006JD007781
  52. Shea DJ, Trenberth KE, Reynolds RW (1992) A global monthly sea surface temperature climatology. J Clim 5:987–1001CrossRefGoogle Scholar
  53. Sodemann H, Schwierz C, Wernli H (2008a) Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J Geophys Res 113(D03107). doi:10.1029/2007JD008503
  54. Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, Wernli H (2008b) Inter-annual variability of Greenland winter precipitation sources. Part II: Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. J Geophys Res (in press)Google Scholar
  55. Steffen K, Box J (2001) Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J Geophys Res 106(D24):33951–33964CrossRefGoogle Scholar
  56. Toracinta ER, Oglesby RJ, Bromwich DH (2004) Atmospheric response to modified CLIMAP ocean boundary conditions under the last glacial maximum. J Climate 17:504–522CrossRefGoogle Scholar
  57. Vimeux F, Masson V, Delaygue G, Jouzel J, Petit JR, Stievenard M (2001) A 420,000 year deuterium excess record from East Antarctica: information on past changes in the origin of precipitation at Vostok. J Geophys Res 106(D23):31863–31873CrossRefGoogle Scholar
  58. Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW (2003) NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys Res Lett 30(7):1387CrossRefGoogle Scholar
  59. Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006) Extending Greenland temperature records into the late eighteenth century. J Geophys Res 111:D11105. doi:10.1029/2005JD006810 CrossRefGoogle Scholar
  60. Werner M, Heimann M (2002) Modeling interannual variability of water isotopes in Greenland and Antarctica. J Geophys Res 1107(D1). doi:10.1029/2001JD900253
  61. Werner M, Mikolajewicz U, Heimann M, Hoffmann G (2000) Borehole versus isotope temperatures on Greenland: seasonality does matter. Geophys Res Lett 27(5):723–726CrossRefGoogle Scholar
  62. Werner M, Heimann M, Hoffmann G (2001) Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus B 53:53–71CrossRefGoogle Scholar
  63. Yin JH, Battisti DS (2001) The importance of tropical sea surface temperature patterns in simulations of last glacial maximum climate. J Clim 14:565–581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Centre for Ice and Climate, Niels Bohr InstituteUniversity of CopenhagenCopenhagen ODenmark

Personalised recommendations