Skip to main content

Advertisement

Log in

Numerical simulation of the probability distribution function of precipitation over Morocco

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A variable resolution version of the global GCM ARPEGE is constructed, so that Morocco has maximum resolution. A 30-year simulation, driven by observed sea surface temperature 1971–2000, is carried out. This paper examines the precipitation over northern Morocco during the extended winter season (from October to March), comparing model simulations with daily values at 14 stations. An approach utilising weather regimes has been adopted. The model is successful in representing the frequency and the interannual variability of the regimes. The precipitation over Morocco differs from one regime to another, but the model is not enough rainy along the Atlantic coast in general. The model is too persistent with too long dry spells, but is able to produce heavy rainfall as well as long dry periods in the centre of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cubasch U, Waszkewitz J, Hegerl G, Perlwitz J (1995) Regional climate changes as simulated in time-slice experiments. Clim Change 31:273–304. doi:10.1007/BF01095150

    Article  Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57:16–26. doi:10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11:321–339. doi:10.1007/BF00215735

    Article  Google Scholar 

  • Déqué M, Marquet P, Jones RG (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Clim Dyn 14:173–189. doi:10.1007/s003820050216

    Article  Google Scholar 

  • Doblas-Reyes FJ, Déqué M (1998) A flexible bandpass filter design procedure applied to midlatitude intraseasonal variability. Mon Weather Rev 126:3326–3335. doi:10.1175/1520-0493(1998)126≤3326:AFBFDP≥2.0.CO;2

    Article  Google Scholar 

  • Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE et al (2003) High-resolution simulations of global climate, part 1: present climate. Clim Dyn 21:371–390. doi:10.1007/s00382-003-0339-z

    Article  Google Scholar 

  • Durman CF, Gregory JM, Hassell DC, Jones RG, Murphy JM (2001) A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Q J R Meteorol Soc 127:1005–1015. doi:10.1002/qj.49712757316

    Article  Google Scholar 

  • El Hamly M, Sebbari R, Portis DH, Ward MN, Lamb PJ (1997) Regionalization of Moroccan precipitation for monitoring and prediction. Proceedings of the 7th conference on climate variations of the Amer Meteor Soc, Long Beach, CA, USA, Feb 2–7, pp 354–357

  • Fox-Rabinovitz M, Coté J, Dugas B, Déqué M, McGregor JL, Belochitski A (2008) Stretched-Grid Model Intercomparison Project: Decadal Regional Climate Simulations with Enhanced Variable and Uniform-Resolution GCMs. Meteorol Atmos Phys (in press).

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108:1–19

    Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339

    Google Scholar 

  • Gibson R, Kallberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1997) Re-Analysis Project Report Series No. 1, European Centre for Medium-Range Weather Forecasts (ECMWF). Reading. UK

  • Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963. doi:10.1175/1520-0442(1990)003≤0941:SORCUA≥2.0.CO;2

    Article  Google Scholar 

  • Goodess C (2003) STAtistical and regional dynamical downscaling of EXtremes for European regions: STARDEX. European Geophysical Union Information Newsletter 6, available on line at http://www.the-eggs.org/articles.php?id = 37

  • Huntingford C, Jones RG, Prudhomme C, Lamb R, Gash JHC, Jones DA (2003) Regional climate-model predictions of extreme rainfall for a changing climate. Q J R Meteorol Soc 129:1607–1621. doi:10.1256/qj.02.97

    Article  Google Scholar 

  • IPCC (2007a) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2007b) Summary for Policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 7–22

  • Jacob D (2001) A note to the simulation of annual and interannual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–74. doi:10.1007/s007030170017

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M et al (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81:31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I. Assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449

    Google Scholar 

  • Knippertz P, Christoph M, Speth P (2003) Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol Atmos Phys 83:67–88. doi:10.1007/s00703-002-0561-y

    Article  Google Scholar 

  • Mansouri B (2004) Impact of drought and fiscal policy on private consumption, private investment and economic growth in Morocco: an empirical analysis. Workshop on the prospects of Arab economic cooperation to boost savings and investment alexandria, Egypt, June 22–24, 2004. The Arab Academy for Sciences and Technology, The Islamic Research & Training Institute (IRTI) of the Islamic Development Bank (IDB)

  • McGregor JL (1996) Semi-Lagrangian advection on conformal-cubic grids. Mon Weather Rev 124:1311–1322. doi:10.1175/1520-0493(1996)124≤1311:SLAOCC≥2.0.CO;2

    Article  Google Scholar 

  • Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and Quasi stationarity. J Atmos Sci 52:1237–1256. doi:10.1175/1520-0469(1995)052≤1237:WRRAQS≥2.0.CO;2

    Article  Google Scholar 

  • Paeth H, Born K, Podzun R, Jacob D (2005) Regional dynamical downscaling over West Africa: model evaluation and comparison of wet and dry years. Meteorologische Z 14:349–367. doi:10.1127/0941-2948/2005/0038

    Article  Google Scholar 

  • Plaut G, Simonnet E (2001) Large-scale circulation classification, weather regimes, and local climate over France, the Alps and Western Europe. Clim Res 17:303–324. doi:10.3354/cr017303

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, et al (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Report No. 218, Max-Planck-Institut für Meteorologie, Hamburg

  • Rummukainen M, Räisänen J, Bringfelt B, Ullerstig A, Omstedt A, Willén U et al (2001) A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359. doi:10.1007/s003820000109

    Article  Google Scholar 

  • Sanchez-Gomez E, et al (2008) Multi-model signature of the Indian and Western Pacific oceans warming in the occurrence of the North Atlantic weather regimes. GRL (in press)

  • Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res 102:23895–23915. doi:10.1029/97JD01864

    Article  Google Scholar 

  • Terray L, Demory ME, Déqué M, de Coetlogon G, Maisonnave E (2004) Simulation of late-twenty-first-century changes in wintertime atmospheric circulation over Europe due to anthropogenic causes. J Clim 17:4630–4635. doi:10.1175/JCLI-3244.1

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Bechtold V, Fiorino M et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118:2056–2081. doi:10.1175/1520-0493(1990)118≤2056:MWROTN≥2.0.CO;2

    Article  Google Scholar 

  • Ward MN, Lamb PJ, Portis DH, El Hamly M, Sebbari R (1999) Climate variability in Northern Africa: understanding droughts in the Sahel and the Maghreb. In: Navarra A (ed) Beyond El Niño: decadal and interdecadal climate variability. Springer, Berlin, pp 119–140

    Google Scholar 

  • Wild M, Ohmura A, Cubash U (1997) GCM simulated surface energy fluxes in climate change experiments. J Clim 10:3093–3110. doi:10.1175/1520-0442(1997)010≤3093:GSSEFI≥2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Moroccan meteorological service for providing station daily data, to ECMWF for providing ERA40 reanalyses and to STARDEX for providing a list of indices widely adopted and a fortran library to compute them. Special thanks to Emilia Sanchez-Gomez for computing centroids of Atlantic regimes and for useful advices. Special thanks also for Dr. Neil Ward for fruitful comments. This study was partly supported by European Commission FP-6 project ENSEMBLES (GOCE-CT-2003-505539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Driouech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driouech, F., Déqué, M. & Mokssit, A. Numerical simulation of the probability distribution function of precipitation over Morocco. Clim Dyn 32, 1055–1063 (2009). https://doi.org/10.1007/s00382-008-0430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0430-6

Keywords

Navigation