Skip to main content
Log in

Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The limits of predictability of El Niño and the Southern Oscillation (ENSO) in coupled models are investigated based on retrospective forecasts of sea surface temperature (SST) made with the National Centers for Environmental Prediction (NCEP) coupled forecast system (CFS). The influence of initial uncertainties and model errors associated with coupled ENSO dynamics on forecast error growth are discussed. The total forecast error has maximum values in the equatorial Pacific and its growth is a strong function of season irrespective of lead time. The largest growth of systematic error of SST occurs mainly over the equatorial central and eastern Pacific and near the southeastern coast of the Americas associated with ENSO events. After subtracting the systematic error, the root-mean-square error of the retrospective forecast SST anomaly also shows a clear seasonal dependency associated with what is called spring barrier. The predictability with respect to ENSO phase shows that the phase locking of ENSO to the mean annual cycle has an influence on the seasonal dependence of skill, since the growth phase of ENSO events is more predictable than the decay phase. The overall characteristics of predictability in the coupled system are assessed by comparing the forecast error growth and the error growth between two model forecasts whose initial conditions are 1 month apart. For the ensemble mean, there is fast growth of error associated with initial uncertainties, becoming saturated within 2 months. The subsequent error growth follows the slow coupled mode related the model’s incorrect ENSO dynamics. As a result, the Lorenz curve of the ensemble mean NINO3 index does not grow, because the systematic error is identical to the same target month. In contrast, the errors of individual members grow as fast as forecast error due to the large instability of the coupled system. Because the model errors are so systematic, their influence on the forecast skill is investigated by analyzing the erroneous features in a long simulation. For the ENSO forecasts in CFS, a constant phase shift with respect to lead month is clear, using monthly forecast composite data. This feature is related to the typical ENSO behavior produced by the model that, unlike the observations, has a long life cycle with a JJA peak. Therefore, the systematic errors in the long run are reflected in the forecast skill as a major factor limiting predictability after the impact of initial uncertainties fades out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • AchutaRao K, Sperber KR (2002) Simulation of the El Niño-Southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Article  Google Scholar 

  • Anderson JL, van den Dool HM (1994) Skill and return of skill in dynamic extended-range forecasts. Mon Weather Rev 122:507–516

    Article  Google Scholar 

  • Arpe K, Hollingsworth A, Tracton MS, Lorenc AC, Uppala S, Kallberg P (1985) The response of numerical weather prediction systems to FGGE level IIbdata—Part II: Forecast verification and implications for predictability. Q J R Meteorol Soc 111:67–101

    Article  Google Scholar 

  • Balmaseda MA, Davey MK, Anderson DLT (1995) Decadal and seasonal dependence of ENSO prediction skill. J Clim 8:2705–2715

    Article  Google Scholar 

  • Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos Ocean 35:367–383

    Google Scholar 

  • Battisti DS (1989) On the role of off-equatorial oceanic Rossby waves during ENSO. J Phys Oceanogr 19:551–560

    Google Scholar 

  • Battisti DS (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J Atmos Sci 45:2889–2919

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Behringer DW et al. (2005) The Global Ocean Data Assimilation System (GODAS) at NCEP (to be submitted)

  • Blumenthal MB (1991) Predictability of a coupled ocean–atmosphere model. J Clim 4:766–784

    Article  Google Scholar 

  • Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832

    Article  Google Scholar 

  • Cane M, Zebiak SE (1987) Prediction of El Niño events using a physical model. In: Cattle H (ed) Atmospheric and oceanic variability. Royal Meteorological Society Press, Reading, pp 153–182

    Google Scholar 

  • Charney J, Fleagle RG, Riehl H, Lally VE, Wark DQ (1966) The feasibility of a global observation and analysis experiment. Bull Am Meteorol Soc 47:200–220

    Google Scholar 

  • Chen WY (1989) Estimates of dynamical predictability from NMC DERF experiments. Mon Weather Rev 117:1227–1236

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (1999) The connection between the boreal spring Southern oscillation persistence barrier and biennial variability. J Clim 12:610–620

    Article  Google Scholar 

  • Dalcher A, Kalnay E (1987) Error growth and predictability in operational ECMWF forecasts. Tellus 39A:474–491

    Article  Google Scholar 

  • Davey M, Huddleston M, Sperber KR, Braconnot P, Bryan F, Chen D, Colman RA, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson TR, Latif M, Le Treut H, Li T, Manabe S, Mechoso CR, Meehl GA, Oberhuber J, Power SB, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington WM, Yoshikawa I, Yu J-Y, Yukimoto S, Zebiak SE (2002) A study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Delecluse P, Davey M, Kitamura Y, Philander S, Suarez M, Bengtsson L (1998) TOGA review paper: coupled general circulation modeling of the tropical Pacific. J Geophys Res 103:14357–14373

    Article  Google Scholar 

  • DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon Weather Rev 133:2972–2995

    Article  Google Scholar 

  • Galanti E, Tziperman E, Harrison M, Rosati A, Giering R, Sirkes Z (2002) The equatorial thermocline outcropping—a seasonal control on the tropical Pacific ocean–atmosphere instability strength. J Clim 15:2721–2739

    Article  Google Scholar 

  • Goswami BN, Shukla J (1991) Predictability of the coupled ocean–atmosphere model. J Clim 4:3–22

    Article  Google Scholar 

  • Goswami BN, Rajendran K, Sengupta D (1997) Source of seasonality and scale dependence of predictability in a coupled ocean–atmosphere model. Mon Weather Rev 125:846–858

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629

    Article  Google Scholar 

  • Gutzler DS, Shukla J (1984) Analogs in the wintertime 500 mb height field. J Atmos Sci 41:177–189

    Article  Google Scholar 

  • Hu H, Huang B, Pegion K (2007) Leading patterns of the tropical Atlantic variability in a coupled general circulation model. Clim Dyn. doi:10.1007/s00382-007-0318-x

  • Ji M, Kumar A, Leetmaa A (1994) An experimental coupled forecast system at the National Meteorological Centre. Some early results. Tellus 46A:398–418

    Google Scholar 

  • Jin EK, Kinter JL III, Wang B, Park C-K, Kang I-S, Kirtman B, Kug J-S, Kumar A, Luo J-J, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn (in press)

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Slingo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R–2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kirtman BP, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S (2002) Current status of ENSO forecast skill: a report to the climate variability and predictability (CLIVAR) Numerical Experimentation Group (NEG). CLIVAR Working Group on seasonal to interannual prediction, 31 pp. Available online at http://www.cliver.org/publications/wgpreports/wgsip/nino3/report.htm

  • Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Weather Rev 131:2324–2341

    Article  Google Scholar 

  • Kleeman R (1993) On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean–atmosphere model. J Clim 6:2012–2033

    Article  Google Scholar 

  • Latif M, Sterl A, Maier-Reimer E, Junge MM (1993) Climate variability in a coupled GCM. Part I: The tropical Pacific. J Clim 6:5–21

    Article  Google Scholar 

  • Latif M et al (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Latif M, Barnett TP, Cane MA, Flügel M, Graham NE, von Storch H, Xu J-S, Zebiak SE (1994) A review of ENSO prediction studies. Clim Dyn 9:167–179

    Article  Google Scholar 

  • Lazar A, Vintzileos A, Doblas-reyes FJ, Rogel P, Delecluse P (2005) Seasonal forecast of tropical climate with coupled ocean–atmosphere general circulation models: on the respective role of the atmosphere and the ocean components in the drift of the surface temperature error. Tellus 57:387–397

    Article  Google Scholar 

  • Leith CE (1971) Atmospheric predictability and two-dimensional turbulence. J Atmos Sci 28:148–161

    Article  Google Scholar 

  • Leith CE, Kraichnan RH (1972) Predictability of turbulent flows. J Atmos Sci 29:1041–1058

    Article  Google Scholar 

  • Leith CE (1978) Objective methods for weather prediction. Annu Rev Fluid Mech 10:107–128

    Article  Google Scholar 

  • Lorenz EN (1965) A study of the predictability of a 28-variable model. Tellus 17:321–333

    Google Scholar 

  • Lorenz EN (1969a) The predictability of a flow which possesses many scales of motion. Tellus 21:289–307

    Google Scholar 

  • Lorenz EN (1969b) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26:636–646

    Article  Google Scholar 

  • Lorenz EN (1982) Atmospheric predictability experiments with a large numerical model. Tellus 34:505–513

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480. doi:10.1029/2003GLO16872

    Article  Google Scholar 

  • Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Le Treut H, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the tropical Pacific in coupled atmosphere–ocean general-circulation models. Mon Weather Rev 123:2825–2838

    Article  Google Scholar 

  • Moorthi S, Pan H-L, Caplan P (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bulletin 484, 14 pp. Available online at http://www.nws.noaa.gov/om/tpb/484.htm

  • Newman M, Sardeshmukh PD, Winkler CR, Whitaker JS (2003) A study of subseasonal predictability. Mon Weather Rev 131:1715–1732

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 manual. NOAA/GFDL. Available online at http://www.gfdl.noaa.gov/_smg/MOM/web/guide_parent/guide_parent.html

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alenxander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407–4443

    Article  Google Scholar 

  • Reynolds CA, Webster PJ, Kalnay E (1994) Random error growth in NMC’s global forecasts. Mon Weather Rev 122:1281–1305

    Article  Google Scholar 

  • Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Weather Rev 125:754–772

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, van den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D, White G, Lord S, Ebisuzaki W, Peng P, Xie P (2006) The NCEP cliamte forecast system. J Clim 15:3483–3517

    Article  Google Scholar 

  • Schneider EK, DeWitt DG, Rosati A, Kirtman BP, Ji L, Tribbia JJ (2003) Retrospective ENSO forecasts: sensitivity to atmospheric model and ocean resolution. Mon Weather Rev 131:3038–3060

    Article  Google Scholar 

  • Schubert SD, Suarez M (1989) Dynamical predictability in a simple general circulation model: average error growth. J Atmos Sci 46:353–370

    Article  Google Scholar 

  • Shukla J (1985) Predictability. In: Hoskins BJ, Pearch RP (eds) Large-scale dynamical processes in the atmosphere. Academic Press, London, pp 87–122

    Google Scholar 

  • Shukla J, Kinter JL III (2006) Predictability of seasonal climate variations: a pedagogical review. In: Palmer T, Hagedorn R (eds) Predictability of weather and climate. Cambridge University Press, London, pp 306–341

    Google Scholar 

  • Simmons AJ, Mureau R, Petroliagis T (1995) Error growth and estimates of predictability from the ECMWF forecasting system. Q J R Meteorol Soc 121:1739–1771

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. I: The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño/Southern oscillation. Q J R Meteorol Soc 124:1985–2004

    Google Scholar 

  • Troup AJ (1965) The ‘‘southern oscillation”. Q J R Meteorol Soc 91:490–506

    Article  Google Scholar 

  • Vintzileos A, Delecluse P, Sadourny R (1999) On the mechanisms in a tropical ocean–global atmosphere coupled general circulation model. Part I: Mean state and the seasonal cycle. Clim Dyn 15:43–62

    Article  Google Scholar 

  • Vitart F (2004) Monthly forecasting at ECMWF. Mon Weather Rev 132:2761–2779

    Article  Google Scholar 

  • Wang B, An S-I (2005) A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys Res Lett 32:L15710

    Article  Google Scholar 

  • Wang W, Saha S, Pan H-L, Nadiga S, White G (2005) Simulation of ENSO in the new NCEP Coupled Forecast System Model (CFS03). Mon Weather Rev 133:1574–1593. doi:10.1175/MWR2936.1

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–925

    Article  Google Scholar 

  • Williamson DL, Kasahara A (1971) Adaptation of meteorological variables forced by updating. J Atmos Sci 28:1313–1324

    Article  Google Scholar 

  • Wright PB (1979) Persistence of rainfall anomalies in the central Pacific. Nature 277:371–374

    Article  Google Scholar 

  • Xue Y, Cane MA, Zebiak SE, Blumenthal MB (1994) On the prediction of ENSO: a study with a low-order Markov model. Tellus 46A:512–528

    Google Scholar 

  • Yu J-Y (2005) Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. J Geophys Res 32:L13707. doi:10.1029/2005GL023406

    Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Southern oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  • Zwiers FW (1996) Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Clim Dyn 12:825–848

    Article  Google Scholar 

  • Zhang Q, Kumar A, Xue Y, Wang W, Jin F-F (2007) Analysis of the ENSO Cycle in NCEP Coupled Forecast Model. J Clim 20:1265–1284

    Article  Google Scholar 

Download references

Acknowledgments

The advice of Jagadish Shukla has been much appreciated, and also discussions with B. Kirtman, B. Wang, and J.-Y. Lee. The forecast data was generously provided by the NCEP Environmental Modeling Center (EMC), long run data was generously provided by K. Pegion (COLA), and the author is grateful for these contributions. The first author was supported by the Asian-Pacific Economic Cooperation Climate Center (APCC) International Research Project. The second author was supported by grants from the National Science Foundation (ATM-0332910), the National Oceanic and Atmospheric Administration (NA04OAR4310034) and the National Aeronautics and Space Administration (NNG04GG46G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia K. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, E.K., Kinter III, J.L. Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim Dyn 32, 675–691 (2009). https://doi.org/10.1007/s00382-008-0418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0418-2

Keywords

Navigation