Skip to main content
Log in

The retrospective prediction of ENSO from 1881 to 2000 by a hybrid coupled model: (II) Interdecadal and decadal variations in predictability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, the retrospective predictions of ENSO (El Niño and Southern Oscillation) were performed for the period from 1881 to 2000 using a hybrid coupled model, which is an ocean general circulation model coupled to a linear statistical atmospheric model, and using a newly developed initialization scheme of SST assimilation by Ensemble Kalman Filter. With the retrospective predictions of the past 120 years, some important issues of ENSO predictability (measured by correlation and RMSE skills of NINO3 sea surface temperature anomaly index) were studied including decadal/interdecadal variations in ENSO predictability and the mechanisms responsible for these variations. Emphasis was placed on investigating the relationship between ENSO predictability and various characteristics of ENSO system such as the signal strength, the irregularity of periodicity, the noise and the nonlinearity. It is found that there are significant decadal/interdecadal variations in the prediction skills of ENSO during the past 120 years. The ENSO events were more predictable during the late nineteenth and the late twentieth centuries. The decadal/interdecadal variations of prediction skills are strongly related to the strength of sea-surface temperature anomaly (SSTA) signals, especially to the strength of SSTA signals at the frequencies of 2–4 year periods. The SSTA persistence, dominated by SSTA signals at frequencies over 4-year periods, also has a positive relationship to prediction skills. The high-frequency noise, on the other hand, has a strong inverse relationship to prediction skills, suggesting that it also probably plays an important role in ENSO predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The correlation was calculated using samples of 20-year period, thus the criteria of its statistical significance would be 0.22 at the confidence level of 95% if the samples used were independent. However, due to a high persistence, the Pacific SSTA is of non-zero trend and autocorrelated time series, serial correlation must be considered when a statistically significant test is performed (Ebisuzaki 1997).

References

  • Balmaseda MA, Davey MK, Anderson DLT (1995) Decadal and seasonal dependence of ENSO prediction skill. J Clim 8:2705–2715

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Saravanan R, Schneider N, Dommenget D, Latif M (1999) Origins of midlatitude Pacific decadal variability. Geophys Res Lett 26:1453–1456

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere–ocean system: influence of the basic state, ocean geometry, and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10:1473–1486

    Article  Google Scholar 

  • Chang P, Ji L, Wang B, Li T (1995) Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model. J Atmos Sci 52:2353–2372

    Article  Google Scholar 

  • Chang P, Giese BS, Ji L, Seidel HF (2001) Decadal change in the south tropical Pacific in a global assimilation analysis. Geophys Res Lett 28:3461–3464

    Article  Google Scholar 

  • Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting. Science 269:1699–1702

    Article  Google Scholar 

  • Chen D, Zebiak SE, Busalacchi AJ, Busalacchi AJ (1997) Initialization and predictability of a coupled ENSO forecast model. Mon Weather Rev 125:773–788

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predictability of El Niño over the past 148 years. Nature 428(6984):733–736

    Article  Google Scholar 

  • Deng Z, Tang Y, Zhou X (2007) Reconstruction of historic wind stress over tropical Pacific for 1856–1947

  • Deng Z, Tang Y, Zhou X (2008) The retrospective prediction of ENSO from 1881–2000 by a hybrid coupled model: (I) SST assimilation with Ensemble Kalman Filter

  • Ebisuzaki W (1997) A method to examine the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153

    Article  Google Scholar 

  • Eckert C, Latif M (1997) Predictability of a stochastically forced hybrid coupled model of El Niño. J Clim 10:1488–1504

    Article  Google Scholar 

  • Flügel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140

    Article  Google Scholar 

  • Garreaud RD, Battisti DS (1999) Interannual (ENSO) and in-terdecadal(ENSO-like) variability in the Southern tropospheric circulation. J Clim 12:2113–2123

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuation that depend on exchanges between the Tropics and the extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hasegawa T, Hanawa K (2003) Decadal-scale variability of upper ocean heat content in the tropical Pacific. Geophys Res Lett 30(6):1272

    Article  Google Scholar 

  • Hunt BG, Elliott TI (2003) Secular variability of ENSO events in a 1000-year climatic simulation. Clim Dyn 20:689–703

    Google Scholar 

  • Ji M, Leetmaa A, Kousky VE (1996) Coupled model predictions of ENSO during the 1980s and the 1990s at the National Centers for Environmental Prediction. J Clim 9:3105–3120

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992

    Article  Google Scholar 

  • Jin JF, Neelin D, Ghil M (1994) ENSO on devil’s straircase. Science 264:70–72

    Article  Google Scholar 

  • John PW, Jeffrey BW (1999) Quantifying persistence in ENSO. J Atmos Sci 56:2737–2760

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Karspeck A, Kaplan A, Cane M (2006) Predictability loss in an intermediate ENSO model due to initial error and atmospheric noise. J Clim 3572–3588

  • Kiem AS, Franks SW (2004) Multi-decadal variability of drought risk, eastern Australia. Hydrol Proc 18(11):2039–2050

    Article  Google Scholar 

  • Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  • Kleeman R, McCreary JP (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 12:1743–1746

    Article  Google Scholar 

  • Kleeman R, Moore AM (1997) A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767

    Article  Google Scholar 

  • Kleeman R, Power SB (1994) Limits to predictability in a coupled ocean–atmosphere model due to atmospheric noise. Tellus 46A:529–540

    Google Scholar 

  • Latif M, Anderson D, Barnett TP, Cane MA, Kleeman R, Leetmaa A, O’Brien JJ, Rostati A, Schneider EK (1998) TOGA review paper predictability and prediction. J Geophys Res 103:14375–14394

    Article  Google Scholar 

  • Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D. Science 290:1145–1148

    Article  Google Scholar 

  • Luo JJ, Yamagata T (2001) Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the Souther Pacific. J Geophys Res 106:22211–22227

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace des Sciences l’Environnement Global, LODYC. Université Pierre et Marie Curie, Paris, France, 97 pp

  • Mantua NJ, Hare SR (2002) The pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30(9):1480. doi:10.1029/2003GL016872

    Google Scholar 

  • Monahan AH (2001) Nonlinear principal component analysis: tropical Indo-Pacific sea surface temperature and sea level pressure. J Clim 14:219–233

    Article  Google Scholar 

  • Monahan AH, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Clim 17:3026–3036

    Article  Google Scholar 

  • Moore AM, Kleeman R (1998) Skill assessment for ENSO using ensemble prediction. Q J R Meteorol Soc 124:557–584

    Article  Google Scholar 

  • Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220

    Article  Google Scholar 

  • Moore AM, Zavala-Garay J, Tang Y, Kleeman R, Vialard J, Weaver A, Sahami K, Anderson DLT, Fisher M (2006) Optimal forcing patterns for coupled models of ENSO. J Clim 19:4683–4699

    Article  Google Scholar 

  • Münnich M, Cane MA, Zebiak SE (1991) A study of self-excited oscillations of the tropical ocean–atmosphere system II. Nonlinear cases. J Atmos Sci 48:1238–1248

    Article  Google Scholar 

  • Nakaegawa T, Kanamitsu M et al (2004) Interdecadal trend of prediction skill in an ensemble AMIP-type experiment. Am Meteorol Soc 7:2881–2889

    Google Scholar 

  • Penland C, Matrasova L (1994) A balance condition for stochastic numerical models with application to the El Niño Sothern Oscillation. J Clim 7:1352–1372

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2002) Bias corrections for historical sea surface temperatures based on marine air temperatures. J Climate 15:73–87

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1954–1997). J Clim 17:2466–2477

    Article  Google Scholar 

  • Solomon A, McCreary JP, Kleeman R, Klinger BA (2003) Interannual and decadal variability in an intermediate coupled model of the Pacific region. J Clim 16:383–405

    Article  Google Scholar 

  • Tang Y, Kleeman R, Moore A (2004a) SST assimilation experiments in a tropical Pacific Ocean model. J Phys Oceangr 34:623–642

    Article  Google Scholar 

  • Tang Y, Kleeman R, Moore A (2004b) A simple method for estimating variations in the predictability of ENSO. Geophy Res Lett 31:L17205. doi:10.1029/2004GL020673

  • Tang Y, Kleeman R, Moore A (2005) On the reliability of ENSO dynamical predictions. J Atmos Sci 62:1770–1791

    Article  Google Scholar 

  • Tang, Y, Deng Z, Zhou X, Cheng Y, Chen D (2008) Interdecadal variation of ENSO predictability in multiple models. J Clim (in press)

  • Thompson CJ, Battisti DS (2000) A linear stochastic dynamical model of ENSO. Part I: Model development. J Clim 13:2818–2832

    Article  Google Scholar 

  • Timmerman A, Jin FF (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett. doi:10.1029/2001GL013369

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Climate 8:267–285

    Article  Google Scholar 

  • Wang B, Barcilon A, Fang Z (1999) Stochastic dynamics of El Niño-Southern oscillation. J Atmos Sci 56:5–23

    Article  Google Scholar 

  • Yeh SW, Jhun JG, Kang IS, Kirtman BP (2004) The decadal ENSO variability in a hybrid coupled model. J Clim 17:1225–1238

    Article  Google Scholar 

  • Yu JY, Liu WT (2003) A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean. Geophys Res Lett 30(14):1735. doi:10.1029/2003GL017176

    Google Scholar 

  • Zhang R, Busalacchi AJ (2005) Interdecadal change in properties of El Niño–Southern oscillation in an intermediate coupled model. J Clim 18:1369–1380

    Article  Google Scholar 

  • Zhang RH, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391:879–882

    Article  Google Scholar 

  • Zhang RH, Rothstein LM, Busalacchi AJ (1999) Interannual and decadal variability of the subsurface thermal structure in the Pacific Ocean: 1961–90. Clim Dyn 15:703–717

    Article  Google Scholar 

  • Zhang R, Zebiak SE, Kleeman R, Keenlyside N (2005) Retrospective El Niño forecasts using an improved intermediate coupled model. Mon Weather Rev 133:2777–2802

    Article  Google Scholar 

  • Zhou XB, Tang Y, Deng Z (2007) Assimilation of historic SST data for ENSO hindcast of the past 126 years (submitted)

Download references

Acknowledgments

We are grateful to Dr. Tom Smith for detailed comments on the original manuscript. This work was supported by Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) Grant GR-523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., Tang, Y. The retrospective prediction of ENSO from 1881 to 2000 by a hybrid coupled model: (II) Interdecadal and decadal variations in predictability. Clim Dyn 32, 415–428 (2009). https://doi.org/10.1007/s00382-008-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0398-2

Keywords

Navigation