Climate Dynamics

, Volume 32, Issue 2–3, pp 415–428

The retrospective prediction of ENSO from 1881 to 2000 by a hybrid coupled model: (II) Interdecadal and decadal variations in predictability

Article
  • 92 Downloads

Abstract

In this study, the retrospective predictions of ENSO (El Niño and Southern Oscillation) were performed for the period from 1881 to 2000 using a hybrid coupled model, which is an ocean general circulation model coupled to a linear statistical atmospheric model, and using a newly developed initialization scheme of SST assimilation by Ensemble Kalman Filter. With the retrospective predictions of the past 120 years, some important issues of ENSO predictability (measured by correlation and RMSE skills of NINO3 sea surface temperature anomaly index) were studied including decadal/interdecadal variations in ENSO predictability and the mechanisms responsible for these variations. Emphasis was placed on investigating the relationship between ENSO predictability and various characteristics of ENSO system such as the signal strength, the irregularity of periodicity, the noise and the nonlinearity. It is found that there are significant decadal/interdecadal variations in the prediction skills of ENSO during the past 120 years. The ENSO events were more predictable during the late nineteenth and the late twentieth centuries. The decadal/interdecadal variations of prediction skills are strongly related to the strength of sea-surface temperature anomaly (SSTA) signals, especially to the strength of SSTA signals at the frequencies of 2–4 year periods. The SSTA persistence, dominated by SSTA signals at frequencies over 4-year periods, also has a positive relationship to prediction skills. The high-frequency noise, on the other hand, has a strong inverse relationship to prediction skills, suggesting that it also probably plays an important role in ENSO predictability.

References

  1. Balmaseda MA, Davey MK, Anderson DLT (1995) Decadal and seasonal dependence of ENSO prediction skill. J Clim 8:2705–2715CrossRefGoogle Scholar
  2. Barnett TP, Pierce DW, Saravanan R, Schneider N, Dommenget D, Latif M (1999) Origins of midlatitude Pacific decadal variability. Geophys Res Lett 26:1453–1456CrossRefGoogle Scholar
  3. Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere–ocean system: influence of the basic state, ocean geometry, and nonlinearity. J Atmos Sci 46:1687–1712CrossRefGoogle Scholar
  4. Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10:1473–1486CrossRefGoogle Scholar
  5. Chang P, Ji L, Wang B, Li T (1995) Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model. J Atmos Sci 52:2353–2372CrossRefGoogle Scholar
  6. Chang P, Giese BS, Ji L, Seidel HF (2001) Decadal change in the south tropical Pacific in a global assimilation analysis. Geophys Res Lett 28:3461–3464CrossRefGoogle Scholar
  7. Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting. Science 269:1699–1702CrossRefGoogle Scholar
  8. Chen D, Zebiak SE, Busalacchi AJ, Busalacchi AJ (1997) Initialization and predictability of a coupled ENSO forecast model. Mon Weather Rev 125:773–788CrossRefGoogle Scholar
  9. Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predictability of El Niño over the past 148 years. Nature 428(6984):733–736CrossRefGoogle Scholar
  10. Deng Z, Tang Y, Zhou X (2007) Reconstruction of historic wind stress over tropical Pacific for 1856–1947Google Scholar
  11. Deng Z, Tang Y, Zhou X (2008) The retrospective prediction of ENSO from 1881–2000 by a hybrid coupled model: (I) SST assimilation with Ensemble Kalman FilterGoogle Scholar
  12. Ebisuzaki W (1997) A method to examine the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153CrossRefGoogle Scholar
  13. Eckert C, Latif M (1997) Predictability of a stochastically forced hybrid coupled model of El Niño. J Clim 10:1488–1504CrossRefGoogle Scholar
  14. Flügel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140CrossRefGoogle Scholar
  15. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and in-terdecadal(ENSO-like) variability in the Southern tropospheric circulation. J Clim 12:2113–2123CrossRefGoogle Scholar
  16. Gu D, Philander SGH (1997) Interdecadal climate fluctuation that depend on exchanges between the Tropics and the extratropics. Science 275:805–807CrossRefGoogle Scholar
  17. Hasegawa T, Hanawa K (2003) Decadal-scale variability of upper ocean heat content in the tropical Pacific. Geophys Res Lett 30(6):1272CrossRefGoogle Scholar
  18. Hunt BG, Elliott TI (2003) Secular variability of ENSO events in a 1000-year climatic simulation. Clim Dyn 20:689–703Google Scholar
  19. Ji M, Leetmaa A, Kousky VE (1996) Coupled model predictions of ENSO during the 1980s and the 1990s at the National Centers for Environmental Prediction. J Clim 9:3105–3120CrossRefGoogle Scholar
  20. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  21. Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992CrossRefGoogle Scholar
  22. Jin JF, Neelin D, Ghil M (1994) ENSO on devil’s straircase. Science 264:70–72CrossRefGoogle Scholar
  23. John PW, Jeffrey BW (1999) Quantifying persistence in ENSO. J Atmos Sci 56:2737–2760CrossRefGoogle Scholar
  24. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  25. Karspeck A, Kaplan A, Cane M (2006) Predictability loss in an intermediate ENSO model due to initial error and atmospheric noise. J Clim 3572–3588Google Scholar
  26. Kiem AS, Franks SW (2004) Multi-decadal variability of drought risk, eastern Australia. Hydrol Proc 18(11):2039–2050CrossRefGoogle Scholar
  27. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822CrossRefGoogle Scholar
  28. Kistler R et al (2001) The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268CrossRefGoogle Scholar
  29. Kleeman R, McCreary JP (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 12:1743–1746CrossRefGoogle Scholar
  30. Kleeman R, Moore AM (1997) A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767CrossRefGoogle Scholar
  31. Kleeman R, Power SB (1994) Limits to predictability in a coupled ocean–atmosphere model due to atmospheric noise. Tellus 46A:529–540Google Scholar
  32. Latif M, Anderson D, Barnett TP, Cane MA, Kleeman R, Leetmaa A, O’Brien JJ, Rostati A, Schneider EK (1998) TOGA review paper predictability and prediction. J Geophys Res 103:14375–14394CrossRefGoogle Scholar
  33. Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D. Science 290:1145–1148CrossRefGoogle Scholar
  34. Luo JJ, Yamagata T (2001) Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the Souther Pacific. J Geophys Res 106:22211–22227CrossRefGoogle Scholar
  35. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace des Sciences l’Environnement Global, LODYC. Université Pierre et Marie Curie, Paris, France, 97 ppGoogle Scholar
  36. Mantua NJ, Hare SR (2002) The pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  37. McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30(9):1480. doi:10.1029/2003GL016872 Google Scholar
  38. Monahan AH (2001) Nonlinear principal component analysis: tropical Indo-Pacific sea surface temperature and sea level pressure. J Clim 14:219–233CrossRefGoogle Scholar
  39. Monahan AH, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Clim 17:3026–3036CrossRefGoogle Scholar
  40. Moore AM, Kleeman R (1998) Skill assessment for ENSO using ensemble prediction. Q J R Meteorol Soc 124:557–584CrossRefGoogle Scholar
  41. Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220CrossRefGoogle Scholar
  42. Moore AM, Zavala-Garay J, Tang Y, Kleeman R, Vialard J, Weaver A, Sahami K, Anderson DLT, Fisher M (2006) Optimal forcing patterns for coupled models of ENSO. J Clim 19:4683–4699CrossRefGoogle Scholar
  43. Münnich M, Cane MA, Zebiak SE (1991) A study of self-excited oscillations of the tropical ocean–atmosphere system II. Nonlinear cases. J Atmos Sci 48:1238–1248CrossRefGoogle Scholar
  44. Nakaegawa T, Kanamitsu M et al (2004) Interdecadal trend of prediction skill in an ensemble AMIP-type experiment. Am Meteorol Soc 7:2881–2889Google Scholar
  45. Penland C, Matrasova L (1994) A balance condition for stochastic numerical models with application to the El Niño Sothern Oscillation. J Clim 7:1352–1372CrossRefGoogle Scholar
  46. Rodgers KB, Friederichs P, Latif M (2004) Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774CrossRefGoogle Scholar
  47. Smith TM, Reynolds RW (2002) Bias corrections for historical sea surface temperatures based on marine air temperatures. J Climate 15:73–87CrossRefGoogle Scholar
  48. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1954–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  49. Solomon A, McCreary JP, Kleeman R, Klinger BA (2003) Interannual and decadal variability in an intermediate coupled model of the Pacific region. J Clim 16:383–405CrossRefGoogle Scholar
  50. Tang Y, Kleeman R, Moore A (2004a) SST assimilation experiments in a tropical Pacific Ocean model. J Phys Oceangr 34:623–642CrossRefGoogle Scholar
  51. Tang Y, Kleeman R, Moore A (2004b) A simple method for estimating variations in the predictability of ENSO. Geophy Res Lett 31:L17205. doi:10.1029/2004GL020673
  52. Tang Y, Kleeman R, Moore A (2005) On the reliability of ENSO dynamical predictions. J Atmos Sci 62:1770–1791CrossRefGoogle Scholar
  53. Tang, Y, Deng Z, Zhou X, Cheng Y, Chen D (2008) Interdecadal variation of ENSO predictability in multiple models. J Clim (in press)Google Scholar
  54. Thompson CJ, Battisti DS (2000) A linear stochastic dynamical model of ENSO. Part I: Model development. J Clim 13:2818–2832CrossRefGoogle Scholar
  55. Timmerman A, Jin FF (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett. doi:10.1029/2001GL013369
  56. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  57. Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Climate 8:267–285CrossRefGoogle Scholar
  58. Wang B, Barcilon A, Fang Z (1999) Stochastic dynamics of El Niño-Southern oscillation. J Atmos Sci 56:5–23CrossRefGoogle Scholar
  59. Yeh SW, Jhun JG, Kang IS, Kirtman BP (2004) The decadal ENSO variability in a hybrid coupled model. J Clim 17:1225–1238CrossRefGoogle Scholar
  60. Yu JY, Liu WT (2003) A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean. Geophys Res Lett 30(14):1735. doi:10.1029/2003GL017176 Google Scholar
  61. Zhang R, Busalacchi AJ (2005) Interdecadal change in properties of El Niño–Southern oscillation in an intermediate coupled model. J Clim 18:1369–1380CrossRefGoogle Scholar
  62. Zhang RH, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391:879–882CrossRefGoogle Scholar
  63. Zhang RH, Rothstein LM, Busalacchi AJ (1999) Interannual and decadal variability of the subsurface thermal structure in the Pacific Ocean: 1961–90. Clim Dyn 15:703–717CrossRefGoogle Scholar
  64. Zhang R, Zebiak SE, Kleeman R, Keenlyside N (2005) Retrospective El Niño forecasts using an improved intermediate coupled model. Mon Weather Rev 133:2777–2802CrossRefGoogle Scholar
  65. Zhou XB, Tang Y, Deng Z (2007) Assimilation of historic SST data for ENSO hindcast of the past 126 years (submitted)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Environmental Science and EngineeringUniversity of Northern British ColumbiaPrince GeorgeCanada

Personalised recommendations