Skip to main content

Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM

Abstract

Impacts of convective momentum transport (CMT) on tropical Pacific climate are examined, using an atmospheric (AGCM) and coupled GCM (CGCM) from Seoul National University. The CMT scheme affects the surface mainly via a convection-compensating atmospheric subsidence which conveys momentum downward through most of the troposphere. AGCM simulations—with SSTs prescribed from climatological and El Nino Southern Oscillation (ENSO) conditions—show substantial changes in circulation when CMT is added, such as an eastward shift of the climatological trade winds and west Pacific convection. The CMT also alters the ENSO wind anomalies by shifting them eastward and widening them meridionally, despite only subtle changes in the precipitation anomaly patterns. During ENSO, CMT affects the low-level winds mainly via the anomalous convection acting on the climatological westerly wind shear over the central Pacific—so that an eastward shift of convection transfers more westerly momentum toward the surface than would occur without CMT. By altering the low-level circulation, the CMT further alters the precipitation, which in turn feeds back on the CMT. In the CGCM, CMT affects the simulated climatology by shifting the mean convection and trade winds eastward and warming the equatorial SST; the ENSO period and amplitude also increase. In contrast to the AGCM simulations, CMT substantially alters the El Nino precipitation anomaly patterns in the CGCM. Also discussed are possible impacts of the CMT-induced changes in climatology on the simulated ENSO.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR Technical Note NCAR/TN-417+STR, Natl. Cent. For Atmos. Res., Boulder, 150 pp

  • Cane MA, Munnich M, Zebiak SE (1990) A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis. J Atmos Sci 47:1562–1577

    Article  Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model. doi:/10.1016/j.ocemod.2006.02.004

  • Carr MT, Bretherton CS (2001) Convective momentum transport over the tropical Pacific: budget estimates. J Atmos Sci 58:1673–1693

    Article  Google Scholar 

  • Dima IM, Wallace JM, Kraucunas I (2005) Tropical zonal momentum balance in the NCEP reanalyses. J Atmos Sci 62:2499–2513

    Article  Google Scholar 

  • Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean-atmosphere interactions: bridging measurements and theory for El Nino. J Clim 14:3086–3101

    Article  Google Scholar 

  • Gregory D, Kershaw R, Inness PM (1997) Parameterization of momentum transport by convection. 2. Tests in single-column and general circulation models. Quart J Roy Meteor Soc 123:1153–1183

    Article  Google Scholar 

  • Ham Y-G, Kug J-S, Kang I-S (2007) Role of moist energy advection in formulating anomalous Walker Circulation associated with El-Nino. J Geophys Res (in press)

  • Helfand HM (1979) Effect of cumulus friction on the simulation of the January Hadley circulation by the Glas model of the general-circulation. J Atmos Sci 36:1827–1843

    Article  Google Scholar 

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorl Soc 77:437–471

    Article  Google Scholar 

  • Kang I-S, Kug J-S (2002) El Nino and La Nina sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107(D19):4372

    Article  Google Scholar 

  • Kershaw R, Gregory D (1997) Parameterization of momentum transport by convection. 1. Theory and cloud modelling results. Quart J R Meteorl Soc 123:1133–1151

    Article  Google Scholar 

  • Kidson JW (1975) Tropical eigenvector analysis and the Southern Oscillation. Mon Wea Rev 103:187–196

    Article  Google Scholar 

  • Kirtman BP (1997) Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J Clim 10:1690–1704

    Article  Google Scholar 

  • Kug J-S, Kang I-S, An S-I (2003) Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J Geophys Res 108(C8):3284

    Article  Google Scholar 

  • Kug J-S, An S-I, Ham Y-G, Kang I-S (2007a) Changes in ENSO teleconnection due to global warming. Int J Climatol (submitted)

  • Kug J-S, Kang I-S, Choi D-H (2007b) Seasonal climate predictability with tier-one and tier-two prediction systems. Clim Dyn. doi:10.1007/s00382-007-0264-7

  • Latif M et al (2003) ENSIP: the El Nino simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Le Treut H, Li Z-X (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187

    Google Scholar 

  • Lee M-I, Kang I-S, Kim J-K, Mapes BE (2001) Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J Geophys Res 106:14219–14233

    Article  Google Scholar 

  • Lee M-I, Kang I-S, Mapes BE (2003) Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J Meteorl Soc Jpn 81:963–992

    Article  Google Scholar 

  • Lin JL, Zhang MH, Mapes B (2005) Zonal momentum budget of the Madden–Julian oscillation: the source and strength of equivalent linear damping. J Atmos Sci 62:2172–2188

    Article  Google Scholar 

  • Lin JL, Mapes BE, Han W (2007) What are the sources of mechanical damping in Matsuno-Gill type models? J Clim (in press)

  • Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Le Treut H, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the Tropical Pacific in general circulation models. Mon Wea Rev 123:2825–2838

    Article  Google Scholar 

  • Nakajima T, Tsukamoto M, Tsushima Y, Numaguti A (1995) Modelling of the radiative processes in an AGCM. In: Matsuno T (ed) Climate system dynamics and modelling, vol I–3. University of Tokyo, Tokyo, pp 104–123

    Google Scholar 

  • Neale R (2007) The role of convective moisture sensitivity in improving major systematic biases in the Community Climate System Model (CCSM). WGNE Workshop on Systematic Errors, San Francisco, February 2007

  • Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res Oceans 104:15621–15634

    Article  Google Scholar 

  • Numaguti A, Takahashi M, Nakajima T, Sumi A (1995) Development of an atmospheric general circulation model. In: Matsuno T (ed) Climate system dynamics and modelling, vol I–3. University of Tokyo, Tokyo, pp 1–27

    Google Scholar 

  • Ogura Y, Phillips NA (1962) Scale analysis of deep and shallow convection in the atmosphere. J Atmos Sci 19:1276–1286

    Google Scholar 

  • Rotunno R, Klemp JB (1982) The influence of the shearinduced pressure gradient on thunderstorm motion. Mon Wea Rev 110:136–151

    Article  Google Scholar 

  • Saravanan R, Chang P (2000) Interactions between tropical Atlantic variability and El Nino-southern Oscillation. J Clim 13:2177–2194

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477

    Article  Google Scholar 

  • Stevens DE (1979) Vorticity, momentum and divergence budgets of synoptic-scale wave disturbances in the Tropical Eastern Atlantic. Mon Wea Rev 107:535–550

    Article  Google Scholar 

  • Thompson SL, Hartmann DL (1979) Cumulus friction—estimated influence on the Tropical Mean Meridional circulation. J Atmos Sci 36:2022–2026

    Article  Google Scholar 

  • Tiedtke M (1983) The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Workshop on convection in large-scale numerical models. ECMWF, 28 Nov–1 Dec 1983, pp 297–316

  • Tiedtke M (1989) A comprehensive mass flux scheme for Cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800

    Article  Google Scholar 

  • Tung WW, Yanai M (2002a) Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J Atmos Sci 59:2535–2549

    Article  Google Scholar 

  • Tung WW, Yanai M (2002b) Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J Atmos Sci 59:1857–1871

    Article  Google Scholar 

  • Uppala SM, co-authors (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wittenberg AT (2002) ENSO response to altered climates. PhD Thesis, Princeton University, 475 pp

  • Wittenberg AT, Rosati T, Held I (2003) ENSO in the GFDL coupled model. Eighth annual CCSM workshop, Breckenridge, 24 June 2003

  • Wu XQ, Yanai M (1994) Effects of vertical wind shear on the Cumulus transport of momentum—observations and parameterization. J Atmos Sci 51:1640–1660

    Article  Google Scholar 

  • Wu XQ, Liang XZ, Zhang GJ (2003) Seasonal migration of ITCZ precipitation across the equator: Why can’t GCMs simulate it? Geophys Res Lett 30(15):1824, doi:10.1029/2003GL017198

    Article  Google Scholar 

  • Wu XQ, Deng L, Song X, Zhang GJ (2007) Coupling of convective momentum transport with convective heating in global climate simulations. J Atmos Sci 64:1334–1349

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorl Soc 78:2539–2558

    Article  Google Scholar 

  • Zelle H, van Oldenborgh GJ, Burgers GJ, Dijkstra H (2005) El Nino and greenhouse warming: results from ensemble simulations with the NCAR CCSM. J Clim 18:4669–4683

    Article  Google Scholar 

  • Zhang GJ, Cho HR (1991) Parameterization of the vertical transport of momentum by Cumulus Clouds. 1. Theory. J Atmos Sci 48:1483–1492

    Article  Google Scholar 

  • Zhang GJ, Mcfarlane NA (1995) Role of convective scale momentum transport in climate simulation. J Geophys Res 100:1417–1426

    Article  Google Scholar 

  • Zhang GJ, Wu X (2003) Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J Atmos Sci 60:1120–1139

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the SRC program of Korea Science and Engineering Foundation, and Brain Korea 21 Project. I.-S. Kang was supported by Ministry of Environment as “The Ecotechnopia 21 project”. F.-F. Jin was partly supported by NSF grants ATM-0652145 and ATM-0650552 and NOAA grants GC01-229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Sik Kang.

Appendix

Appendix

Budget calculation for anomalous vertical advection

Here, we derive Eq. (2) using daily averaged convective mass flux (M c ) and zonal wind (u). First the daily-mean variables from the climatological run (( )C) and El Nino SST run (( )E) are divided as follows,

$$ \begin{aligned} M^{C}_{c} &= \overline{{(M^{C}_{c})}} + (M^{C}_{c})^{\prime\prime}\\u^{C}_{c} &= \overline{{(u^{C}_{c})}} + (u^{C}_{c})^{\prime\prime} \end{aligned} $$
(1a)
$$ \begin{aligned} M^{E}_{c} &= \overline{{(M^{C}_{c})}} + (M^{E}_{c})^{\prime}\,\, + \,\,(M^{E}_{c})^{\prime\prime}\\u^{E}_{c} &= \overline{{(u^{C}_{c})}} + (u^{E}_{c})^{\prime}\,\, + \,\,(u^{E}_{c})^{\prime\prime} \end{aligned} $$
(2a)

where an overbar \(\overline{{(\;)}}\) denotes a seasonal mean value. A prime ( )′ denotes a seasonal-mean anomaly, and a double prime ( )′′ a daily fluctuation. Note that the seasonal mean from the El Nino SST run is decomposed into a climatology and seasonal mean anomaly.

The vertical advection term in Eq. (1) is

$$ - M_{c} \frac{{\partial u}}{{\partial p}} $$
(3a)

Substituting Eqs. (1a) and (2a) into (3a) and taking a seasonal mean, we get the seasonal mean momentum forcing by the CMT vertical advection term in Eq. (1).

For the climatology run,

$$ - \overline{{M^{C}_{c} \frac{{\partial u^{C}}}{{\partial p}}}} = - \overline{{(M^{C}_{c})}} \frac{\partial}{{\partial p}}\overline{{(u^{C})}} - \overline{{(M^{C}_{c})^{\prime\prime}\frac{\partial}{{\partial p}}(u^{C})^{\prime\prime}}} $$
(4a)

and for the El Nino SST run,

$$ \begin{aligned} - \overline{{M^{E}_{c} \frac{{\partial u^{E}}}{{\partial p}}}} &= - \,\overline{{(M^{C}_{c})}} \frac{\partial}{{\partial p}}\overline{{(u^{C})}} - \overline{{(M^{C}_{c})}} \frac{\partial}{{\partial p}}(u^{E})^{\prime}\, - (M^{E}_{c})^{\prime}\frac{\partial}{{\partial p}}\overline{{u^{C}}} \\ & \quad - (M^{E}_{c})^{\prime}\frac{\partial}{{\partial p}}(u^{E})^{\prime}\, - \overline{{(M^{E}_{c})^{\prime\prime}\frac{\partial}{{\partial p}}(u^{E})^{\prime\prime}}} \\\end{aligned} $$
(5a)

We then obtain the seasonally anomalous momentum forcing due to the CMT vertical advection term, by subtracting (5a) from (4a):

$$ \begin{aligned} - \overline{{M^{E}_{c} \frac{{\partial u^{E}}}{{\partial p}}}} + \overline{{M^{C}_{c} \frac{{\partial u^{C}}}{{\partial p}}}} &= - \overline{{(M^{C}_{c})}} \frac{\partial}{{\partial p}}(u^{E})^{\prime}\, - (M^{E}_{c})^{\prime}\frac{\partial}{{\partial p}}\overline{{u^{C}}} \\ & \quad - (M^{E}_{c})^{\prime}\frac{\partial}{{\partial p}}(u^{E})^{\prime}\, - \overline{{(M^{E}_{c})^{\prime\prime}\frac{\partial}{{\partial p}}(u^{E})^{\prime\prime}}} + \overline{{(M^{C}_{c})^{\prime\prime}\frac{\partial}{{\partial p}}(u^{C})^{\prime\prime}}} \\\end{aligned} $$
(6a)

Equation (6a) is repeated in the main text as Eq. (2). We label the four terms in the right hand side of Eq. (6a) as follows:

Term A—climatological mass flux and seasonally anomalous wind shear

$$ - \overline{{(M^{C}_{c})}} \frac{\partial}{{\partial p}}(u^{E})^{\prime} $$
(7a)

Term B—seasonally anomalous mass flux and climatological wind shear

$$ - (M^{E}_{c})^{\prime}\frac{\partial}{{\partial p}}\overline{{u^{C}}} $$
(8a)

Term C—seasonally anomalous mass flux and seasonally anomalous wind shear

$$ - (M^{E}_{c})^{\prime}\frac{\partial}{{\partial p}}(u^{E})^{\prime} $$
(9a)

Term D—change in transient eddy momentum

$$ - \overline{{(M^{E}_{c})^{\prime\prime}\frac{\partial}{{\partial p}}(u^{E})^{\prime\prime}}} + \overline{{(M^{C}_{c})^{\prime\prime}\frac{\partial}{{\partial p}}(u^{C})^{\prime\prime}}} $$
(10a)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, D., Kug, JS., Kang, IS. et al. Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn 31, 213–226 (2008). https://doi.org/10.1007/s00382-007-0348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0348-4

Keywords

  • Wind Stress
  • Zonal Wind
  • Wind Shear
  • Vertical Wind Shear
  • Pressure Gradient Force