Climate Dynamics

, Volume 30, Issue 7–8, pp 779–788 | Cite as

Cloud radiative forcing of subtropical low level clouds in global models

  • Johannes KarlssonEmail author
  • Gunilla Svensson
  • Henning Rodhe


Simulations of subtropical marine low clouds and their radiative properties by nine coupled ocean-atmosphere climate models participating in the fourth assesment report (AR4) of the intergovernmental panel on climate change (IPCC) are analyzed. Satellite observations of cloudiness and radiative fluxes at the top of the atmosphere (TOA) are utilized for comparison. The analysis is confined to the marine subtropics in an attempt to isolate low cloudiness from tropical convective systems. All analyzed models have a negative bias in the low cloud fraction (model mean bias of  −15%). On the other hand, the models show an excess of cloud radiative cooling in the region (model mean excess of 13 W m−2). The latter bias is shown to mainly originate from too much shortwave reflection by the models clouds rather than biases in the clear-sky fluxes. These results confirm earlier studies, thus no major progress in simulating the marine subtropical clouds is noted. As a consequence of the combination of these two biases, this study suggests that all investigated models are likely to overestimate the radiative response to changes in low level subtropical cloudiness.


Low clouds Cloud radiative forcing Global climate models Stratocumulus Cloud feedback ERBE ISCCP IPCC 



Thanks go to Frida Bender for good discussions and critical comments. The ERBE-data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. The climatological monthly mean ISCCP D2 data were obtained from the International Satellite Cloud Climatology Project web site maintained by the ISCCP research group at the NASA Goddard Institute for Space Studies, New York, NY on March, 2005. ICOADS data provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA, from their Web site at We acknowledge the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, U.S. Department of Energy.


  1. Allan RP, Ringer MA (2003) Inconsistencies between satellite estimates of longwave cloud forcing and dynamical fields from reanalyses. Geophys Res Lett 30(9):1491. doi: 10.1029/2003GL017019 CrossRefGoogle Scholar
  2. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32(L20):806. doi: 10.1029/2005GL023851 Google Scholar
  3. Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86CrossRefGoogle Scholar
  4. Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Déqué M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95(D10):16601–16615CrossRefGoogle Scholar
  5. Cess RD, Zhang MH, Ingram WJ, Potter GL, Alekseev V, Barker HW, Cohen-Solal E, Colman RA, Dazlich DA, Del Genio AD, Dix MR, Esch M, Fowler LD, Fraser JR, Galin V, Gates WL, Hack JJ, Kiehl JT, Le Treut H, Lo KK-W, McAvaney BJ, Meleshko VP, Morcrette J-J, Randall DA, Roeckner E, Royer J-F, Schlesinger ME, Sporyshev PV, Timbal B, Volodin EM, Taylor KE, Wang W, Wetherald RT (1996) Cloud feedback in atmospheric general circulation models: an update. J Geophys Res 101(D8):12791–12794CrossRefGoogle Scholar
  6. Charlock TP, Ramanathan V (1985) The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J Atmos Sci 42:1408–1429CrossRefGoogle Scholar
  7. Coakley JAJ, Baldwin DG (1984) Towards the objective analysis of clouds from satellite imagery data. J Clim Appl Meteor 23:1065–1099CrossRefGoogle Scholar
  8. Collins W, Rasch P, Boville B, Hack J, McCaa J, Williamson D, Kiehl J, Briegleb B, Bitz C, Lin S, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM 3.0), tech note TN-464+STR. Technical report. National Center For Atmospheric Research, BoulderGoogle Scholar
  9. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674CrossRefGoogle Scholar
  10. Gnanadesikan A, Dixon KW, Griffies SM, V Balaji, Barreiro M, Beesley JA, Cooke WF, Delworth TL, Gerdes R, Harrison MJ, Held IM, Hurlin WJ, Lee H-C, Liang Z, Nong G, Pacanowski RC, Rosati A, Russell J, Samuels BL, Song Q, Spelman MJ, Stouffer RJ, Sweeney CO, Vecchi G, Winton M, Wittenberg AT, Zeng F, Zhang R, Dunne JP (2006) GFDL’s CM2 global coupled climate models. Part II: the baseline ocean simulation. J Clim 19:675–697CrossRefGoogle Scholar
  11. Harrison EF, Minnis P, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment. J Geophys Res 95:18687–18703CrossRefGoogle Scholar
  12. Hartmann D, Ockert-Bell M, Michelsen M (1992) The effect of cloud type on earth’s energy balance: global analysis. J Clim 5:1281–1304CrossRefGoogle Scholar
  13. IPCC, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, H M (eds) (2007) IPCC: climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Technical report. Cambridge University Press, Cambridge, p 996Google Scholar
  14. Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the tropical western pacific. Geophys Res Lett 30(21):2082. doi: 10.1029/2003GL018367 CrossRefGoogle Scholar
  15. K-1 Model Developers (2004) K-1 coupled model (MIROC) description. Hasumi H, Emori S (eds) Tech. report 1. Technical report, Center for Climate System Research. University of Tokyo, TokyoGoogle Scholar
  16. Klein S, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606CrossRefGoogle Scholar
  17. Klein S, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127:2514–2531CrossRefGoogle Scholar
  18. Li Z, Trishchenko A (2001) Quantifying uncertainties in determining sw cloud radiative forcing and cloud absorption due to variability in atmospheric conditions. J Atmos Sci 58:376–389CrossRefGoogle Scholar
  19. Marti O, Bellier J, Benshila R, Bony S, Brockmann P, Cadulle P, Caubel A, Denvil S, Dufresne J, Fairhead L, Filiberti M-A, Fichefet T, Friedlingstein P, Grandpeix J-Y, Hourdin F, Krinner G, Lévy C, Musat I, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Report 26. Technical report, Institut Pierre Simon Laplace, ParisGoogle Scholar
  20. Pope V, Gallani M, Rowntree P, Stratton R (2000) The impact of new physical parametrizations in the Hadley Centre climate model-HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  21. Potter GL, Cess RD (2004) Testing the impact of clouds on the radiation budgets of 19 AMIP models. J Geophys Res 109(D2):106. doi: 10.1029/2003JD004018 CrossRefGoogle Scholar
  22. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63CrossRefGoogle Scholar
  23. Ringer M, Allan R (2004) Evaluating climate model simulations of tropical cloud. TELLUS A 56:308–327CrossRefGoogle Scholar
  24. Rossow W, Schiffer R (1999) Advances in Understanding Clouds from ISCCP. Bull Am Meteor Soc 80:2261–2287CrossRefGoogle Scholar
  25. Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60:1201–1219CrossRefGoogle Scholar
  26. Slingo J (1980) A cloud parametrization scheme derived from gate data for use with a numerical model. Quart J Roy Meteor Soc 106:747–770CrossRefGoogle Scholar
  27. Slingo A (1990) Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature 343:49–51CrossRefGoogle Scholar
  28. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360CrossRefGoogle Scholar
  29. Stephens G (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273CrossRefGoogle Scholar
  30. Svensson G, Tjernström M, Koracin D (2000) The sensitivity of a stratocumulus transition: model simulations of the astex first lagrangian. Bound Layer Meteor 95:57–90CrossRefGoogle Scholar
  31. Washington W, Weatherly J, Meehl G, Semtner A Jr, Bettge T, Craig A, Strand W Jr, Arblaster J, Wayland V, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774CrossRefGoogle Scholar
  32. Weare BC (1999) Combined satellite- and surface-based observations of clouds. J Clim 12:897–913CrossRefGoogle Scholar
  33. Weare BC (2004) A comparison of AMIP II model cloud layer properties with ISCCP D2 estimates. Clim Dyn 22:281–292CrossRefGoogle Scholar
  34. Weare BC, Mokhov II, Amip Modeling Groups (1996) Evaluation of the vertical structure of zonally averaged cloudiness and Its variability in the atmospheric model intercomparison project. J Clim 9:3419–3431CrossRefGoogle Scholar
  35. Webb M, Senior C, Bony S, Morcrette J (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905–922CrossRefGoogle Scholar
  36. Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38CrossRefGoogle Scholar
  37. Wei Y, Doutriaux M, Séze G, Le Treut H, Desbois M (1996) A methodology study of the validation of clouds in GCMs using ISCCP satellite observations. Clim Dyn 12:389–401CrossRefGoogle Scholar
  38. Williams KD, Tselioudis G (2007) Gcm intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29:231–250. doi: 10.1007/s00382-007-0232-2 CrossRefGoogle Scholar
  39. Williams KD, Senior CA, Mitchell JFB (2001) Transient climate change in the Hadley centre models: the role of physical processes. J Clim 14:2659–2674CrossRefGoogle Scholar
  40. Williams K, Senior C, Slingo A, Mitchell J (2005) Towards evaluating cloud response to climate change using clustering technique identification of cloud regimes. Clim Dyn 24:701–719. doi: 10.1007/s00382-004-0512-z CrossRefGoogle Scholar
  41. Wyant M, Bretherton C, Bacmeister J, Kiehl J, Held I, Zhao M, Klein S, Soden B (2006) A comparison of low-latitude cloud properties and their response to climate change in three agcms sorted into regimes using mid-tropospheric vertical. Clim Dyn 27:261–279. doi: 10.1007/s00382-006-0138-4 CrossRefGoogle Scholar
  42. Yu Y, Zhang X, Guo Y (2004) Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–445CrossRefGoogle Scholar
  43. Zhang MH, Lin WY, Klein SA, Bacmeister JT, Bony S, Cederwall RT, Del Genio AD, Hack JJ, Loeb NG, Lohmann U, Minnis P, Musat I, Pincus R, Stier P, Suarez MJ, Webb MJ, Wu JB, Xie SC, Yao M-S, Zhang JH (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110(D15):S02. doi: 10.1029/2004JD005021 Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Johannes Karlsson
    • 1
    Email author
  • Gunilla Svensson
    • 1
  • Henning Rodhe
    • 1
  1. 1.Department of MeteorologyStockholm UniversityStockholmSweden

Personalised recommendations