Climate Dynamics

, Volume 30, Issue 2–3, pp 225–238 | Cite as

Investigating lower stratospheric model transport: Lagrangian calculations of mean age and age spectra in the GCM ECHAM4

  • Christian Reithmeier
  • Robert SausenEmail author
  • Volker Grewe


The Lagrangian scheme ATTILA is used to calculate age spectra and the mean age of air in the general circulation model ECHAM4. The advantage of the Lagrangian method is that temporal variation in transport is taken into account and that beyond transport times the actual transport pathways can be investigated. We found a strong seasonal cycle in mean age and age spectra, especially at high latitudes. When plotting polar age spectra against time, it can clearly be seen that the edge of the polar vortex acts as an efficient transport barrier and that exchange with extra-polar air takes place only for a short period of approximately two months after the polar vortex has broken down. Compared to observations the mean age is reproduced satisfactorily below approximately 20 km. Above that level however, the mean age is underestimated, especially at high latitudes. Furthermore, the observed sharp meridional gradient is located too far polewards in the model, which indicates that the subtropical transport barrier is too weak. There is a distinct variation in the shape of the age spectra with latitude. At low latitudes the age spectra consist of one single peak, whereas at higher latitudes secondary peaks appear, which are one year apart and whose positions in the spectrum are independent of the location. At polar latitudes there are even several peaks of approximately equal size. We explain these peaks with two superposing processes. First, the seasonal cycle of the upward mass flux at the tropical tropopause produces a single peak age distribution. And second, at polar latitudes, the temporal evolution of the polar vortex allows mixing of polar and subtropical air only once a year, which results in a superposition of these single peak age distributions. A final investigation of the transport pathways gave indications for predominant routes from the tropics to high latitudes resulting in altitude dependent meridional transport, however, more detailed studies of 3D trajectory data will be needed to clarify this issue.


Seasonal Cycle Polar Vortex Polar Latitude Tropical Tropopause Inert Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authos thank Dr. C. Johnson (UK Met. Office) for generously providing the STOCHEM code, which facilitated the development of ATTILA considerably and two anonymous reviewer for fruitful comments. This work was supported by the AFS project of the German Bundesministerium für Bildung und Forschung (project 07 AF 311 /3).


  1. Andrews AE, Boering KA, Daube BC, Wofsy SC, Hintsa EJ, Weinstock EM, Bui TP (1999) Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: implications for stratospheric transport. J Geophys Res 104(D21):26581–26595CrossRefGoogle Scholar
  2. Andrews AE, Boering KA, Wofsy SC, Daube BC, Jones DB, Alex S, Loewenstein M, Podolske JR, Strahan SE (2001) Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical “barrier” to horizontal transport. J Geophys Res 106(D10):10257–10274Google Scholar
  3. Appenzeller C, Holton JR, Rosenlof KH (1996) Seasonal variation of mass transport across the tropopause. J Geophys Res 101(D10):15071–15078CrossRefGoogle Scholar
  4. Bonazzola M, Haynes PH (2004) A trajectory-based study of the tropical tropopause region. J Geophys Res 109:D20112  doi:10.1029/2003JD004356 CrossRefGoogle Scholar
  5. Brinkop S, Sausen R (1997) A finite difference approximation for convective transports which maintains positive tracer concentrations. Beitr Phys Atmos 70(3):245–248Google Scholar
  6. Chen P, Holton JR, O’Neill A, Swinbank R (1994) Isentropic mass exchange between the tropics and extratropics in the stratosphere. J Atmos Sci 51(20):3006–3018CrossRefGoogle Scholar
  7. Eluszkiewicz J, Hemler RS, Mahlman JD, Bruhwiler L, Takacs LL (2000) Sensitivity of age-of-air calculations to the choice of advection scheme. J Atmos Sci 57(19):3185–3201CrossRefGoogle Scholar
  8. Eyring V, Dameris M, Grewe V, Langbein I, Kouker W (2003) Climatologies of subtropical mixing derived from 3D models. Atmos Chem Phys 3:1007–1021Google Scholar
  9. Fu R, Hu Y, Wright JS, Jiang JH, Dickinson RE, Chen M, Filipiak M, Read WG, Waters JW, Wu DL (2006) Short circuit of water vapour and polluted air to the global stratosphere by convective transport over the Tibetian Plateau. Proc Natl Acad Sci USA 103, 5664-5669  doi:10.1073/pnas.0601584103
  10. Fueglistaler S, Haynes PH (2005) Control of interannual and longerterm variability of stratospheric water vapor. J Geophys Res 110:D24108  doi:10.1029/2005JD006019 CrossRefGoogle Scholar
  11. Fueglistaler S, Wernli H, Peter T (2004) Tropical troposphere–tostratosphere transport inferred from trajectory calculations. J Geophys Res 109:D03108, doi:10.1029/ 2003JD004069CrossRefGoogle Scholar
  12. Fueglistaler S, Bonazzola M, Haynes PH, Peter T (2005) Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J Geophys Res 110:D08107, doi:10.1029/2004JD005516CrossRefGoogle Scholar
  13. Grewe V (2006) The origin of ozone. Atmos Chem Phys 6:1495–1511Google Scholar
  14. Grewe V, Stenke A, Ponater M, Sausen R, Pitari G, Iachetti D, Rogers H, Dessens O, Pyle J, Isaksen ISA, Gulstad L, Søvde OA, Marizy C, Pascuillo E (2007) Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet? Results from the EUproject SCENIC. Atmos Chem Phys Discuss 7:6143–6187Google Scholar
  15. Hall TM (2000) Path histories and timescales in stratospheric transport: analysis of an idealized model. J Geophys Res 105(D18):22811–22823CrossRefGoogle Scholar
  16. Hall TM, Plumb RA (1994) Age as a diagnostic of stratospheric transport. J Geophys Res 99(D1):1059–1070CrossRefGoogle Scholar
  17. Hall TM, Waugh DW (1997) Timescales for the stratospheric circulation derived from tracers. J Geophys Res 102(D7):8991–9001CrossRefGoogle Scholar
  18. Hall TM, Waugh DW, Boering KA, Plumb RA (1999) Evaluation of transport in stratospheric models. J Geophys Res 104(D15):18815–18839CrossRefGoogle Scholar
  19. Hatsushika H, Yamazaki K (2003) Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories. J Geophys Res 108(D19):4610  doi:10.1029/2002JD002986 CrossRefGoogle Scholar
  20. Hein R, Dameris M, Schnadt C, Land C, Grewe V, Köhler I, Ponater M, Sausen R, Steil B, Landgraf J, Brühl C (2001) Results of an interactively coupled atmospheric chemistry—general circulation model: comparison with observations. Ann Geophysicae 19:435–457CrossRefGoogle Scholar
  21. Holton JR, Haynes PH, McIntyre ME, Douglas AR, Rood RB, Pfister L (1995) Stratosphere–troposphere-exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  22. Kida H (1983) General circulation of air parcels and transport characteristics derived from a hemispheric GCM, Part 2. Very long-term motions of air parcels in the troposphere and stratosphere. J Met Soc 61(4):510–522Google Scholar
  23. Lelieveld J, Brühl C, Jöckel P, Steil B, Crutzen PJ, Fischer H, Giorgetta MA, Hoor P, Lawrence MG, Milz M, Sausen R, Stiller GP, Tost H (2006) Stratospheric dryness. Atmos Chem Phys Disc 6:11247–11298CrossRefGoogle Scholar
  24. Manzini E, Feichter J (1999) Simulation of the SF6 Tracer with the middle atmosphere MAECHAM4 Model: aspects of the large-scale transport. J Geophys Res 104(D24):31097–31108CrossRefGoogle Scholar
  25. Park JH, Ko MKW, Jackman CH, Plumb RA, Kaye JA, Sage KH (eds) (1999) Models and measurements intercomparison II, NASA Tech. Publ., NASA/TM-1999-209554, National Aeronautics and Space Administration, 494 ppGoogle Scholar
  26. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1990) Numerical Recipes—the art of scientific computing (FORTRAN Version). Cambridge University Press, CambridgeGoogle Scholar
  27. Rasch PJ, Williamson DL (1990) Computational aspects of moisture transport in global models of the atmosphere. Q J R Met Soc 116:1071–1090CrossRefGoogle Scholar
  28. Ray EA, Moore FL, Elkins JW, Dutton GS, Fahey DW, Vömel H, Oltmans SJ, Rosenlof KH (1999) Transport into the Northern Hemisphere lowermost stratosphere revealed by in situ tracer measurements. J Geophys Res 104(D21):26565–26580CrossRefGoogle Scholar
  29. Reddmann T, Ruhnke R, Kouker W (2001) Three-dimensional model simulations of SF6 with mesospheric chemistry. J Geophys Res 106(D13):14525–14537CrossRefGoogle Scholar
  30. Reithmeier C (2001) Untersuchungen zum globalen Spurenstofftransport und Stratosphären-Troposphären-Austausch mit dem Lagrangeschen Modell ECHAM4/ATTILA, Ph.D Thesis, May 2001, Ludwig-Maximilians-Universität, München, available as: Forschungsbericht 2001-09, ISSN 1434-8454, Deutsches Zentrum für Luft- und Raumfahrt eV (DLR), KölnGoogle Scholar
  31. Reithmeier C, Sausen R (2002) ATTILA—atmospheric tracer transport in a Lagrangian model. Tellus 54(3):278–299CrossRefGoogle Scholar
  32. Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution, report no. 93, ISSN 0937-1060, Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  33. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate, report no. 218, ISSN 0937-1060, Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  34. Rosenlof KH (1995) Seasonal cycle of the residual mean meridional circulation in the stratosphere. J Geophys Res 100(D3):5173–5191CrossRefGoogle Scholar
  35. Rosenlof KH, Holton JR (1993) Estimates of the stratospheric residual circulation using the downward control principle. J Geophys Res 98(D6):10465–10479Google Scholar
  36. Scheele MP, Siegmund PC, van Velthoven PFJ (2005) Stratospheric age of air computed with trajectories based on various 3D-Var and 4D-Var data sets. Atmos Chem Phys 5:1–7CrossRefGoogle Scholar
  37. Schoeberl MR, Sparling LC, Jackman CH, Fleming EL (2000) A Lagrangian view of stratospheric trace gas distributions. J Geophys Res 105(D1):1537–1552CrossRefGoogle Scholar
  38. Schoeberl MR, Douglass AR, Zhu Z, Pawson S (2003) A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems. J Geophys Res 108(D3):4113, doi:10.1029/2002JD002652CrossRefGoogle Scholar
  39. Schoeberl MR, Douglass AR, Polansky B, Boone C, Walker KA, Bernath P (2005) Estimation of stratospheric age spectrum from chemical tracers. J Geophys Res 110:D21303,  doi:10.1029/2005JD006125 CrossRefGoogle Scholar
  40. Stenke A, Grewe V, Ponater M (2007) Lagrangian transport of water vapor and cloud water in the ECHAM4 GCM and its impact on the cold bias. Clim Dyn (revised)Google Scholar
  41. Volk CM, Elkins JW, Fahey DW, Dutton GS, Gilligan JM, Loewenstein M, Podolske JR, Chan KR, Gunson MR (1997) Evaluation of source gas lifetimes from stratospheric observations. J Geophys Res 102(D21):25543–25564CrossRefGoogle Scholar
  42. Waugh DW (1996) Seasonal variation of isentropic transport out of the tropical stratosphere. J Geophys Res 101(D2):4007–4023CrossRefGoogle Scholar
  43. Waugh DW, Hall TM (2002) Age of stratospheric air: theory, observations, and models. Rev Geophys 40(4):1010  doi:10.1029/2000RG000101 CrossRefGoogle Scholar
  44. Williamson DL, Rasch PJ (1994) Water vapor transport in the NCAR CCM2. Tellus 46A:34–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christian Reithmeier
    • 1
    • 2
  • Robert Sausen
    • 1
    Email author
  • Volker Grewe
    • 1
  1. 1.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR) e.V.WesslingGermany
  2. 2.BMW GroupMünchenGermany

Personalised recommendations