Climate Dynamics

, Volume 30, Issue 1, pp 37–58 | Cite as

Causes and impacts of changes in the Arctic freshwater budget during the twentieth and twenty-first centuries in an AOGCM

  • Olivier ArzelEmail author
  • Thierry Fichefet
  • Hugues Goosse
  • Jean-Louis Dufresne


The fourth version of the atmosphere-ocean general circulation (AOGCM) model developed at the Institut Pierre-Simon Laplace (IPSL-CM4) is used to investigate the mechanisms influencing the Arctic freshwater balance in response to anthropogenic greenhouse gas forcing. The freshwater influence on the interannual variability of deep winter oceanic convection in the Nordic Seas is also studied on the basis of correlation and regression analyses of detrended variables. The model shows that the Fram Strait outflow, which is an important source of freshwater for the northern North Atlantic, experiences a rapid and strong transition from a weak state toward a relatively strong state during 1990–2010. The authors propose that this climate shift is triggered by the retreat of sea ice in the Barents Sea during the late twentieth century. This sea ice reduction initiates a positive feedback in the atmosphere-sea ice-ocean system that alters both the atmospheric and oceanic circulations in the Greenland-Iceland-Norwegian (GIN)-Barents Seas sector. Around year 2080, the model predicts a second transition threshold beyond which the Fram Strait outflow is restored toward its original weak value. The long-term freshening of the GIN Seas is invoked to explain this rapid transition. It is further found that the mechanism of interannual changes in deep mixing differ fundamentally between the twentieth and twenty-first centuries. This difference is caused by the dominant influence of freshwater over the twenty-first century. In the GIN Seas, the interannual changes in the liquid freshwater export out of the Arctic Ocean through Fram Strait combined with the interannual changes in the liquid freshwater import from the North Atlantic are shown to have a major influence in driving the interannual variability of the deep convection during the twenty-first century. South of Iceland, the other region of deep water renewal in the model, changes in freshwater import from the North Atlantic constitute the dominant forcing of deep convection on interannual time scales over the twenty-first century.


Arctic Ocean Atlantic Meridional Overturn Circulation Freshwater Flux Freshwater Budget Convection Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Didier Swingedouw kindly provided several Ferret routines for the analysis. We would like to thank Penny Ajani for having made wording suggestions on a final draft of this paper. H. Goosse is Research Associate with the Belgian National Fund for Scientific Research. This work was conducted within the European project ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts) and the Action Concertée Incitative Changement Climatique et Cryosphère funded by the French Ministry of Research.


  1. Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94:14485–14498CrossRefGoogle Scholar
  2. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905CrossRefGoogle Scholar
  3. Arfeuille G, Mysak LA, Tremblay L-B (2000) Simulation of the interannual variability of the wind-driven Arctic sea-ice cover 1958–1988. Clim Dyn 16:107–121CrossRefGoogle Scholar
  4. Bengtsson L, Semenov VA, Johanessen OA (2004) The early twientieth-century warming in the Arctic. A possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  5. Bitz CM, Roe GH (2004) A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J Clim 17:3623–3631Google Scholar
  6. Blindheim J (1989) Cascading of Barents Sea bottom water into the Norwegian Sea. Rapp P-V Reun Const Int Explor Mer 17:161–189Google Scholar
  7. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25N. Nature 438:655–657CrossRefGoogle Scholar
  8. Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30. doi:10.1029/2003GL018931Google Scholar
  9. Coachman LK, Aagaard K (1966) On the water exchange through Bering Strait. Limnol Oceanogr 11:44–59CrossRefGoogle Scholar
  10. Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829CrossRefGoogle Scholar
  11. Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic in recent decades. Science 308:1772–1774CrossRefGoogle Scholar
  12. Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837CrossRefGoogle Scholar
  13. Dickson KW, Brown R (1994) The production of North Atlantic deep water—sources, rates and pathways. J Geophys Res 12:319–341Google Scholar
  14. Dickson RR, Meincke J, Malmberg S, Lee AJ (1988) The “Great Salinity Anomaly” in the northern North Atlantic. Prog Oceanogr 20:103–151CrossRefGoogle Scholar
  15. Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295CrossRefGoogle Scholar
  16. Dickson RR, Dye S, Karcher M, Meincke J, Rudels B, Yashayaev I (2006) Current estimates of freshwater flux through Arctic and subarctic seas. Prog Oceanogr (in press)Google Scholar
  17. Dufresne J-L, Quaas J, Boucher O, Denvil S, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32. doi:10.1029/2005GL023619Google Scholar
  18. Emery WJ, Fowler CW, Maslanik JA (1997) Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophys Res Lett 24:897–900CrossRefGoogle Scholar
  19. Fahrbach E, Meincke J, Osterhus S, Rohardt G, Schauer U, Tverberg V, Verduin J (2001) Direct measurements of volume transports through Fram Strait. Polar Res 20:217–224CrossRefGoogle Scholar
  20. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646CrossRefGoogle Scholar
  21. Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30. doi:10.1029/2003GL017826Google Scholar
  22. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 407:453–457CrossRefGoogle Scholar
  23. Goosse H, Holland M (2005) Mechanisms of decadal Arctic climate variability in the Community Climate System Model CCSM2. J Clim 18:3552–3570CrossRefGoogle Scholar
  24. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2002) A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Clim Dyn 19:61–83CrossRefGoogle Scholar
  25. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2003) Large sea-ice volume anomalies simulated in a coupled climate model. Clim Dyn 20:523–536Google Scholar
  26. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model of intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32. doi:10.1029/2005GL023209Google Scholar
  27. Hakkinen S (1999) A Simulation of thermohaline effects of a great salinity anomaly. J Clim 12:1781–1795CrossRefGoogle Scholar
  28. Hansen B, Turrell WR, Osterhus S (2001) Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature 411:927–930CrossRefGoogle Scholar
  29. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  30. Holland MM, Bitz CM, Eby M, Weaver A (2001) The role of ice-ocean interactions in the variability of the North-Atlantic thermohaline circulationGoogle Scholar
  31. Houghton JT et al (2001) IPCC 2001, Climate Change (2001) The scientific basis, Contribution of Working Group 1 to the third assessment report of Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 ppGoogle Scholar
  32. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Clim Dyn 19:3445–3482Google Scholar
  33. Jungclaus JH, Haak H, Mikolajewicz U, Latif M (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4016–4034CrossRefGoogle Scholar
  34. Kerr RA (2005) The Atlantic Conveyor may have slowed, but don’t panic yet. Science 310:1403–1404CrossRefGoogle Scholar
  35. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32. doi:10.1029/2005GL024233Google Scholar
  36. Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2005) Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate modelGoogle Scholar
  37. Krinner G, Niovy N, Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19, GB1015. doi:10.1029/2003GB002199Google Scholar
  38. Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res 109. doi:10.1029/2003JC001785Google Scholar
  39. Latif M, Boning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U (2006) Is the thermohaline circulation changing? J Clim 19:4631–4637CrossRefGoogle Scholar
  40. Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994. Volume 3: Salinity. NOAA Atlas NESDIS 3. US Deptartment of Commerce, Washington, DCGoogle Scholar
  41. Madec G, Delecluse P, Imbard M, Lévy M (1998) OPA 8.1, Ocean General Circulation Model reference manual, Notes du pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, vol 11, 91 ppGoogle Scholar
  42. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and Sea ice anomalies on the winter circulation in CCM3. Part I Main features and storm track characteristics of the response. J Clim 17:857–876CrossRefGoogle Scholar
  43. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by fresh-water input into the North Atlantic Ocean. Nature 378:165–167CrossRefGoogle Scholar
  44. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne J-L, Fairhead L, Filiberti MA, Foujols M-A, Fichefet T, Friedlingstein P, Goosse H, Grandpeix J-Y, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Noblet N, Polcher J, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Note du pôle de modélisation, 26, ISSN 1288–1619, 2005.
  45. Mauritzen C, Hakkinen S (1997) Influence of sea ice on the thermohaline circulation in the Arctic-North Atlantic Ocean. Geophys Res Lett 24:3257–3260CrossRefGoogle Scholar
  46. Meredith MP, Heywood K, Dennis P, Goldson L, White R, Fahrbach E, Schauer U, Osterhus S (2001) Freshwater fluxes through the western Fram Strait. Geophys Res Lett 28:1615–1618CrossRefGoogle Scholar
  47. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502CrossRefGoogle Scholar
  48. Overland JE, Spillane MC, Soreide NN (2004) Integrated analysis of physical and biological pan-Arctic change. Clim Change 63:291–322CrossRefGoogle Scholar
  49. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  50. Pickart RS, Straneo F, Moore GWK (2003) Is Labrador Sea Water formed in the Irminger basin? Deep Sea Res 50:23–52CrossRefGoogle Scholar
  51. Prinsenberg SJ, Hamilton J (2005) Monitoring the volume, freshwater and heat fluxes passing through Lancaster Sound in the Canadian Arctic Archipelago. Atmos Oceans 43:1–22CrossRefGoogle Scholar
  52. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2000JC000542Google Scholar
  53. Renssen H, Goosse H, Fichefet T (2002) Modeling the effect of freshwater pulses on the early Holocene climate: the influence of the high-frequency climate variability. Paleocanography 17. doi:10.1029/2001PA000649Google Scholar
  54. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea ice cover. Geophys Res Lett 26:3469–3472CrossRefGoogle Scholar
  55. Russel GL, Rind D (1999) Response to CO2 transient increase in the GISS coupled model: regional coolings in a warming climate. J Clim 12:531–539CrossRefGoogle Scholar
  56. Schaeffer M, Selten FM, Opsteegh (2002) Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys Res Lett 29. doi:10.1029/2002GL015254Google Scholar
  57. Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2004) The influence of ocean convection patterns on high-latitude climate projections. J Clim 17:4316–5329CrossRefGoogle Scholar
  58. Sciremammano F (1979) A suggestion for the presentation of correlations and their significance levels. J Phys Oceanogr 9:1273–1276CrossRefGoogle Scholar
  59. Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:157–207CrossRefGoogle Scholar
  60. Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111. doi:10.1029/2005JC003424Google Scholar
  61. Stouffer RJ, Broccoli AJ, Delworth TL, Dixon KW, Gudgel R, Held I, Hemler R, Knutson T, Lee H-C, Schwarzkopf MD, Soden B, Spelman MJ, Winton M, Zeng F (2006) GFDL’s CM2 global coupled climate models. Part IV Idealized climate response. J Clim 19:723–740CrossRefGoogle Scholar
  62. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2006) Sensitivity of the Atlantic thermohaline circulation to global freshwater forcing. Clim Dyn (published online). doi:10.1007/s00382-006-0171-3Google Scholar
  63. Valcke S, Declat D, Redler R, Ritzdorf H, Schoenemeyer T, Vogelsang R (2004) Proceedings of the 6th international meeting: high performance computing for computational science, Universidad Politecnica de Valencia, Valencia, Spain. The PRISM Coupling and I/O System. VECPAR’04Google Scholar
  64. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  65. Vinje T (2001) Fram Strait ice fluxes and atmospheric circulation 1950–2000. J Clim 14:3508–3517CrossRefGoogle Scholar
  66. Vinje T, Nordlund N, Kvambekk A (1998) Monitoring ice thickness in Fram Strait. J Geophys Res 103:10437–10449CrossRefGoogle Scholar
  67. Woodgate RE, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32. doi:10.1029/2004GL021747Google Scholar
  68. Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19:210–225CrossRefGoogle Scholar
  69. Wu P, Wood R, Stott P (2004) Does the recent freshening trend in the North Atlantic indicate a weakening of the thermohaline circulation? Geophys Res Lett 31. doi:10.1029/2003GL018584Google Scholar
  70. Wu P, Wood R, Stott P (2005) Human influence on increasing Arctic river discharges. Geophys Res Lett 32. doi:10.1029/2004GL021570Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Olivier Arzel
    • 1
    Email author
  • Thierry Fichefet
    • 2
  • Hugues Goosse
    • 2
  • Jean-Louis Dufresne
    • 3
  1. 1.Climate and Environmental Dynamics Laboratory, School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia
  2. 2.Institut d’Astronomie et de Géophysique G. LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Laboratoire de Météorologie DynamiqueInstitut Pierre Simon Laplace UPMC/CNRSParisFrance

Personalised recommendations