Abstract
Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).
Similar content being viewed by others
Notes
We choose to call the simulations ‘coupled’ and ‘uncoupled’ as this designation is commonly used to specify this setup of simulations. Nevertheless, atmosphere/ocean as well as atmosphere/land fluxes of energy, water and CO2 are calculated and exchanged each time step in both runs.
References
Boschetti L, Eva HD, Brivio PA, Gregoire JM (2004) Lessons to be learned from the comparison of three satellite-derived biomass burning products. Geophys Res Lett 31:L21501 doi:10.1029/2004GR021229
Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136
Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538
Cox PM, Betts RA, Bunton CB, Essery RL, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon–cycle feedbacks in a coupled climate model. Nature 408:184–187
Cox PM, Betts RA, Collins M, Harris PP, Huntingforth C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156 doi:10.1007/s00704–004–0049–4
Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373
Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global three-dimensional model of d18O in atmospheric CO2: 1. Validation of surface processes. J Geophys Res 108(D17):4527 doi:10.1029/2002JD003153
Farquhar GD, von Caemmerer S, Berry JA, (1980) A biogeochemical model of photosynthesis in leaves of C3 species. Planta 149:78–90
Friedlingstein P, Dufresne J-L, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus 55B:692–700
Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate - carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Climate 19:3337–3353 doi:10.1175JCLI3800.1
Global Carbon Project (2003) Science framework and implementation. In: Canadell JG, Dickinson R, Hibbard K, Raupach M, Young O (eds) Earth system science partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No. 1, Global Carbon Project Report No. 1, 69 pp, Canberra
Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390
Jones PD, New M, Parker DM, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2). doi:10.1029/1999RG900002
Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochem Cycles 15:453–465
Jones CD, Collins M, Cox PM, Spall SA (2001) The carbon cycle response to ENSO: a coupled climate-carbon cycle model study. J Climate 14:4113–4129
Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19:3952–3972. doi:10.1175JCLI3827.1
Kattge J, Knorr W (2007) The temperature dependence of photosynthetic capacity in a photosynthesis model acclimates to plant growth temperature: a re-analysis of data from 36 species. Plant Cell Environ (accepted)
Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge
King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312. doi:10.1126/Science.1114166
Knorr W (2000) Annual and interannual CO2 exchange of the terrestrial biosphere: Process based simulations and uncertainties. Global Ecol Biogeogr 9:225–252
Knorr W, Heimann M (2001) Uncertainties in global terrestrial biosphere modeling. Part II: global constraints for a processed-based vegetation model. Global Biogeoch Cycles 15:227–246
Knorr W, Prentice IC, House JI, Holland EA (2005a) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301
Knorr W, Scholze M, Gobron N, Pinty B, Kaminski T (2005b) Global-scale drought caused atmospheric CO2 increase. Eos Trans AGU 86(18): 178
Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: Plants face the future. Annu Rev Plant Biol 55:591–628. doi: 10.1146/annurev.arplant.55.031903.141610
Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics data base and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330. doi: 10.1080/014311600210191
Marland G, Boden TA, Andres RJ (2003) Global, regional and national emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge
Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell 5:91–127
Matthews HD, Eby M., Weaver AJ, Hawkins BJ (2005) Primary productivity control of simulated carbon cycle–climate feedbacks. Geophys Res Lett 32:L14708. doi:10.1029/2005GL022941
Peylin P, Bousquet P, Le Quere C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochem Cycles 19:GB1011. doi:10.1029/2003GB002214
Prentice IC et al (2001) The carbon cycle and atmospheric CO2. In: Houghton JT, Yihui D (eds) The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report. Cambridge University Press, New York, chap. 3, pp 185–237
Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36
Rayner PJ, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005) Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochem Cycles 19:GB2026. doi:10.1029/2004GB002254
Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U., Tompkins A (2003) The general circulation model ECHAM5. Part I: Model description. Report 349, Max-Planck-Institut for Meteorology, Hamburg
Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2005) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19:3771–3791. doi:10.1175JCLI3824.1
Roedenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys Discuss 3:2575–2659
Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Lewis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185
Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Res 49:1601–1622
Tans PP, Conway TJ (2005) Monthly atmospheric CO2 mixing ratios from the NOAA CMDL carbon cycle cooperative global air sampling network, 1968–2002. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge
Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. doi:10.1007/s00382–005-0057-9
Wetzel P, Winguth A, Maier-Reimer E (2005) Sea-to-air CO2 fluxes from 1948 to 2003. Global Biogeochem Cycles 19:GB2005. doi:10.1029/2004GB002339
Zeng N, Qian H, Munoz E, Iacono R (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31:L20203. doi:10.1029/2004GL020904
Acknowledgments
This research was financed by the German Ministry for Education and Research (BMBF) under two DEKLIM projects, grants 01LD0106 and 01LD0024, and by the European Community under the CYCLOPES project. The simulations were performed on the NEC SX-6 supercomputer installed at the German Climate Computing Centre (DKRZ) in Hamburg. We thank all C4MIP participants for contributing their model results and numerous helpful comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Raddatz, T.J., Reick, C.H., Knorr, W. et al. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?. Clim Dyn 29, 565–574 (2007). https://doi.org/10.1007/s00382-007-0247-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-007-0247-8