Skip to main content

Advertisement

Log in

Effects of variability of sea ice transport through the Fram Strait on the intensity of the Atlantic deep circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Results from an ice-ocean coupled model are used to investigate the impact of long-term variability in sea ice transport at the Fram Strait on the intensity of the Atlantic deep circulation. An increase (or decrease) in sea ice transport through the Fram Strait leads to a stronger (or weaker) deep circulation in the Atlantic. Change in the sea ice transport is accompanied by a salinity anomaly in the surface layer of the Arctic Ocean. Such an anomaly could inversely affect the Atlantic circulation once it reaches deep water formation regions. If the Canadian Archipelago is closed, the anomaly is subsequently transported through the Fram Strait, and counters the initial changes in the Atlantic deep circulation. On the other hand, if the Canadian Archipelago is open, some of the anomaly is transported to the Canadian Archipelago, and the initial change in the Atlantic deep circulation persists. In the Arctic Ocean basin, the time scale and path of the salinity anomalys propagation depends on the large-scale flow at the surface of the Arctic Ocean. Our results suggest that the salinity anomaly transport and its propagation pathway out of the Arctic Ocean are important determinants of the role of sea ice transport variability through the Fram Strait in controlling the intensity of the Atlantic deep circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aagaard K, Carmack EC (1989) The role of sea ice and other freshwater in the Arctic circulation. J Geophys Res 94:14485–14498

    Google Scholar 

  • Aukrust T, Oberhuber JM (1995) Modeling of the Greenland, Iceland, and Norwegian Seas with a coupled sea ice-mixed layer-isopycnal ocean momdel. J Geophys Res 100:4771–4789

    Article  Google Scholar 

  • Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323:301–304

    Article  Google Scholar 

  • Cox MD (1987) Isopycnal diffusion in a z-coordinate ocean model. Ocean Modell. 74. Hooke Inst., Oxford Univ. Oxford, pp 1–5

  • Dickson RR, Meincke J, Malmberg S, Lee AJ (1988) The Great Salinity Anomaly in the northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151

    Article  Google Scholar 

  • Dickson RR, Osborn TJ, Hurrell JW, Meincke J, Blindheim J, Adlandsvik B, Vinje T, Alekseev G, Maslowski W (2000) The Arcitc Ocean response to the North Atlantic Oscillation. J Clim 13:2671–2696

    Article  Google Scholar 

  • Gent PR, Willbrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25:463–474

    Article  Google Scholar 

  • Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30:1473. doi:10.1029/2003GL017065

    Article  Google Scholar 

  • Häkkinen S (1993) An Arctic source for the Great Salinity Anomaly: a simulation of the Arctic ice-ocean system for 1955–1975. J Geophys Res 98:16397–16410

    Article  Google Scholar 

  • Häkkinen S (1999) A simulation of thermohaline effects of a Great Salinity Anomaly. J Clim 12:1781–1795

    Article  Google Scholar 

  • Harder M, Lemke P, Hilmer M (1998) Simulation of sea ice transport through Fram Strait: natural variability and sensitivity to forcing. J Geophys Res 103:5595–5606

    Article  Google Scholar 

  • Hasumi H, Suginohara N (1995) Haline circulation induced by formation and melting of sea ice. J Geophys Res 100:20613–20625

    Article  Google Scholar 

  • Hilmer M, Harder M, Lemke P (1998) Sea ice transport: a highly variable link between Arctic and North Atlantic. Geophys Res Lett 25:3359–3362

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2000) Efficient and accurate bulk parameterizations of air-sea fluxes for use in general circulation models. J Atmos Oceanic Technol 17:1421–1438

    Article  Google Scholar 

  • Killworth PD (1983) Deep convection in the world ocean. Rev Geophys 21:1–26

    Google Scholar 

  • Komuro Y, Hasumi H (2003) Effects of surface freshwater flux induced by sea ice transport on the global thermohaline circulation. J Geophys Res 108:3047. doi:10.1029/2002JC001476

    Article  Google Scholar 

  • Komuro Y, Hasumi H (2005) Intensification of the Atlantic deep circulation by the Canadian Archipelago throughflow. J Phys Oceanogr 35:775–789

    Article  Google Scholar 

  • Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res 109:C01009. doi:10.1029/2003JC001785

    Article  Google Scholar 

  • Martin T, Wadhams P (1999) Sea-ice flux in the East Greenland Current. Deep-Sea Res Part II 46:1063–1082

    Article  Google Scholar 

  • Mauritzen C, Häkkinen S (1997) Influence of sea ice on the thermohaline circulation in the Arctic-North Atlantic Ocean. Geophys Res Lett 24:3257–3260

    Article  Google Scholar 

  • Melling H (2000) Exchanges of freshwater through the shallow straits of the North American Arctic. NATO Science Series. Kluwer, Dordrecht, pp 479–502

  • Melling H (2004) Fluxes through the northern Canadian Arctic Archipelago. ASOF newsletter issue No. 2. ASOF 3–7

  • Myers PG (2005) Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophys Res Lett 32:L06605. doi:10.1029/2004GL022082

    Article  Google Scholar 

  • Nakano H, Suginohara N (2002) Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J Phys Oceanogr 32:1209–1227

    Article  Google Scholar 

  • Perry GD, Duffy PB, Miller NL (1996) An extended data set of river discharges for validation of general circulation models. J Geophys Res 101:21339–21349

    Article  Google Scholar 

  • Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic Oscillation. J Clim 15:2648–2663

    Article  Google Scholar 

  • Röske F (2001) An atlas of surface fluxes based on the ECMWF re-analysis—a climatological dataset to force global ocean general circulation models. Max-Planck-Institute for Meteorology Report No. 323. Max-Planck-Institute für Meteorologie Hamburg, Germany

  • Saenko OA, Wiebe EC, Weaver AJ (2003) North Atlantic response to the above-normal export of sea ice from the Arctic. J Geophys Res 108:3224. doi:10.1029/2001JC001166

    Article  Google Scholar 

  • Schmitz WJ Jr (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33:151–173

    Article  Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigtions of climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Serreze MC, Maslanik JA, Barry RG, Demaria TL (1992) Winter atmospheric circulation in the Arctic basin and possible relationships to the Great Salinity Anomaly in the northern North Atlantic. Geophys Res Lett 19:293–296

    Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Climate 14:2079–2087

    Article  Google Scholar 

  • Stössel A, Yang K, Kim SJ (1998) On the role of sea ice and convection in a global ocean model. J Phys Oceanogr 28:1999–2018

    Article  Google Scholar 

  • Thomas D, Martin S, Rothrock DA, Steele M (1996) Assimilating satellite concentration data into an Arctic sea ice mass balance model, 1979–1985. J Geophys Res 101:20849–20868

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995) Effects of sea ice on the salinity of Antarctic bottom waters. J Phys Oceanogr 25:1980–1997

    Article  Google Scholar 

  • Vinje T (2001) Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J Clim 14:3508–3517

    Article  Google Scholar 

  • Vinje T, Nordlund N, Kvambekk Å (1998) Monitoring ice thickness in Fram Strait. J Geophys Res 103:10437–10449

    Article  Google Scholar 

  • Zhang S, Greatbatch RJ, Lin CA (1993) A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling. J Phys Oceanogr 23:287–299

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Masahiro Endoh and Dr. Ichiro Yasuda provided helpful comments and suggestions. Thanks are extended to Dr. Akira Oka for fruitful discussions. This research was partially supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B), 17740303, 2005. Figures in this paper were produced using the GFD-DENNOU graphics library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Komuro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komuro, Y., Hasumi, H. Effects of variability of sea ice transport through the Fram Strait on the intensity of the Atlantic deep circulation. Clim Dyn 29, 455–467 (2007). https://doi.org/10.1007/s00382-007-0245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0245-x

Keywords

Navigation