Climate Dynamics

, Volume 28, Issue 5, pp 517–531 | Cite as

Evaluating EOF modes against a stochastic null hypothesis

Article

Abstract

In this paper it is suggested that a stochastic isotropic diffusive process, representing a spatial first order auto regressive process (AR(1)-process), can be used as a null hypothesis for the spatial structure of climate variability. By comparing the leading empirical orthogonal functions (EOFs) of a fitted null hypothesis with EOF modes of an observed data set, inferences about the nature of the observed modes can be made. The concept and procedure of fitting the null hypothesis to the observed EOFs is in analogy to time analysis, where an AR(1)-process is fitted to the statistics of the time series in order to evaluate the nature of the time scale behavior of the time series. The formulation of a stochastic null hypothesis allows one to define teleconnection patterns as those modes that are most distinguished from the stochastic null hypothesis. The method is applied to several artificial and real data sets including the sea surface temperature of the tropical Pacific and Indian Ocean and the Northern Hemisphere wintertime and tropical sea level pressure.

References

  1. Aires F, Rossow WB, Chedin A (2002) Rotation of EOFs by the independent component analysis: toward a solution of the mixing problem in the decomposition of geophysical time series. J Atmos Sci 59:111–123CrossRefGoogle Scholar
  2. Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or North Atlantic oscillation?. J Clim 14:3495–3507CrossRefGoogle Scholar
  3. Baquero A, Latif M (2002) On dipole-like variability in the tropical Indian Ocean. J Clim 15(11):1358–1368CrossRefGoogle Scholar
  4. Barnett TP, Graham N, Pazan S, White W, Latif M, Flügel M (1993) ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J Clim 6(8):1545–1566CrossRefGoogle Scholar
  5. Behera SK, Rao SA, Saji HN, Yamagata T (2003) Comments on ’A cautionary note on the interpretation of EOFs’. J Clim 16(7):1087–1093CrossRefGoogle Scholar
  6. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  7. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  8. Cahalan RF, Wharton LE, Wu M-L (1996) Empirical orthogonal functions of monthly precipitation and temperature over the United States and homogenous stochastic models. J Geophys Res 101(D21):26309–26318CrossRefGoogle Scholar
  9. Crommelin DT, Majda AJ (2004) Strategies for model reduction: comparing different optimal bases. J Atmos Res 61:2206–2217CrossRefGoogle Scholar
  10. Deser C (2000) On the teleconnectivity of the “Arctic Oscillation”. Geophys Res Lett 27(6):779–782CrossRefGoogle Scholar
  11. Dommenget D, Latif M (2002a) A cautionary note on the interpretation of EOF. J Clim 15(2):216–225CrossRefGoogle Scholar
  12. Dommenget D, Latif M (2002b) Analysis of observed and simulated SST spectra in the midlatitudes. Clim Dyn 19:277–288CrossRefGoogle Scholar
  13. Dommenget D, Latif M (2003) Reply to Behera et al. 2003. J Clim 16(7):1094–1097CrossRefGoogle Scholar
  14. Dommenget D, Stammer D (2004) Assessing ENSO simulations and predictions using adjoint ocean state north GR, 1984 estimation. J Clim 17(22):4301–4315CrossRefGoogle Scholar
  15. van den Dool HM, Saha S, Johansson A (2000) Empirical orthogonal teleconnections. J Clim 13:1421–1435CrossRefGoogle Scholar
  16. Folland CK, Parker DE, Colman AW, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Nino. Springer, Berlin Heidelberg New York, pp 73–102Google Scholar
  17. Gerber EP, Vallis GK (2005) A stochastic model for the spatial structure of annular patterns of variability and the North Atlantic Oscillation. J Clim 18(12):2102–2118CrossRefGoogle Scholar
  18. Hasselmann K (1976) Stochastic climate models. Part I: Theory, Tellus 28:473–485CrossRefGoogle Scholar
  19. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, Berlin Heidelberg New York, pp 150–166Google Scholar
  20. Jolliffe IT (2003) A cautionary note on artificial examples of EOFs. J Clim 6(7):1084–1086CrossRefGoogle Scholar
  21. Kaiser HF (1958) The varimax criterion for analytic rotations in factor analysis. Psychometrika 23:187CrossRefGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler M, Collins R, Deaven W, Gandin D, Iredell L, Saha M, White S, Woollen G, Zhu J, Chelliah Y, Ebisuzaki M, Higgins W, Janowiak W, Mo J, Ropelewski KC, Wang C, Leetmaa J, Reynolds A, Jenne R, Joseph R, Dennis R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  23. Kirtman BP, Pegion K, Kinter SM (2005) Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J Atmos Res 62:2220–2233CrossRefGoogle Scholar
  24. North L (1991) Atmospheric variability on a zonally symetric land planet. J Clim 4:753–765CrossRefGoogle Scholar
  25. Metz W (1994) Singular modes and low-frequency atmospheric variability. J Atmos Sci 51:1740–1753CrossRefGoogle Scholar
  26. Navarra A (1993) A new set of orthogonal modes for linearized meteorological problems. J Atmos Sci 50:2569–2583CrossRefGoogle Scholar
  27. North GR (1984) Empirical orthogonal functions and normal modes. J Atmos Sci 41:879–887CrossRefGoogle Scholar
  28. North GR, Cahalan RF, Coakley JA (1981) Energy-balance climate models. Rev Geophys Sp Phys 19:91–121Google Scholar
  29. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706CrossRefGoogle Scholar
  30. North GR, Mengel JG, Short DA (1983) A simple energy balance model resolving the seasons and the continents: application to the astronomical theory of the ice ages. J Geophys Res 88:6576–6586CrossRefGoogle Scholar
  31. Overland JE, Preisendorfer RW (1982) A significance test for pricipal components applied to a cyclone climatology. Mon Wea Rev 110(1):1–4CrossRefGoogle Scholar
  32. Reynolds RW (1978) Sea surface temperature anomalies in the North Pacific ocean. Tellus 30:97–103CrossRefGoogle Scholar
  33. Richman MB (1986) Review article: rotation of principal components. J Climatology 6:293–335CrossRefGoogle Scholar
  34. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  35. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge. ISBN 0 521 45071 3, 494 ppGoogle Scholar
  36. Thompson DWJ, Wallace JM (1998) The Artic oscillation signature in wintertime geopotential height field and temperature field. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  37. Wallace JM, Thompson DWJ (2002) The Pacific center of action of the northern hemisphere annular mode: real or artifact? J Clim 15(14):1987–1991CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Leibniz-Institut für MeereswissenschaftenKielGermany

Personalised recommendations