Climate Dynamics

, Volume 26, Issue 5, pp 459–472 | Cite as

Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA year

  • A. Rinke
  • K. Dethloff
  • J. J. Cassano
  • J. H. Christensen
  • J. A. Curry
  • P. Du
  • E. Girard
  • J.-E. Haugen
  • D. Jacob
  • C. G. Jones
  • M. Køltzow
  • R. Laprise
  • A.H. Lynch
  • S. Pfeifer
  • M. C. Serreze
  • M. J. Shaw
  • M. Tjernström
  • K. Wyser
  • M. Žagar
Article

Abstract

Simulations of eight different regional climate models (RCMs) have been performed for the period September 1997–September 1998, which coincides with the Surface Heat Budget of the Arctic Ocean (SHEBA) project period. Each of the models employed approximately the same domain covering the western Arctic, the same horizontal resolution of 50 km, and the same boundary forcing. The models differ in their vertical resolution as well as in the treatments of dynamics and physical parameterizations. Both the common features and differences of the simulated spatiotemporal patterns of geopotential, temperature, cloud cover, and long-/shortwave downward radiation between the individual model simulations are investigated. With this work, we quantify the scatter among the models and therefore the magnitude of disagreement and unreliability of current Arctic RCM simulations. Even with the relatively constrained experimental design we notice a considerable scatter among the different RCMs. We found the largest across-model scatter in the 2 m temperature over land, in the surface radiation fluxes, and in the cloud cover which implies a reduced confidence level for these variables.

References

  1. ACIA (2004) Impacts of a warming Arctic: arctic climate impact assessment. Overview report. Cambridge University Press, Cambridge, pp 146Google Scholar
  2. Beesley JA, Bretherton CS, Jakob C, Andreas EL, Intrieri JM, Uttal TA (2000) A comparison of the cloud and boundary layer variables in the ECMWF forecast model with observations at SHEBA ice camp. J Geophys Res 105:12337–12349CrossRefGoogle Scholar
  3. Box JE, Rinke A (2003) Representation of Greenland ice sheet surface climate in the HIRHAM regional climate model. J Clim 16:1302–1319Google Scholar
  4. Bromwich DH, Cassano JJ, Klein T, Heinemann G, Hines KM, Steffen K, Box JE (2001) Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon Wea Rev 129:2290–2309CrossRefGoogle Scholar
  5. Caya D, Laprise R (1999) A semi-implicit semi-Lagrangian regional climate model: the Canadian RCM. Mon Wea Rev 127:341–362CrossRefGoogle Scholar
  6. Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of Polar MM5 simulations of Greenland’s atmospheric circulation. J Geophys Res 106:33867–33889CrossRefGoogle Scholar
  7. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. DMI Sci. Rep. 96–4, Dan. Meteorol. Inst., Copenhagen, pp 51Google Scholar
  8. Comiso J (2002) Bootstrap sea ice concentrations for NIMBUS-7 SMMR and DMSP SSM/I. National Snow and Ice Data Center, Boulder, Digital mediaGoogle Scholar
  9. Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the coupled model intercomparison project. Global and Planetary Change 37:103–133CrossRefGoogle Scholar
  10. Curry JA, Lynch AH (2002) Comparing arctic regional climate models. EOS Trans Am Geophys Union 83:87CrossRefGoogle Scholar
  11. Davies HC (1976) A lateral boundary formulation for multilevel prediction models. Q J R Meteorol Soc 102:405–418CrossRefGoogle Scholar
  12. Dethloff K, Rinke A, Lehmann R, Christensen JH, Botzet M, Machenhauer B (1996) A regional climate model of the Arctic atmosphere. J Geophys Res 101:23401–23422CrossRefGoogle Scholar
  13. Dethloff K, Abegg C, Rinke A, Hebestadt I, Romanov V (2001) Sensitivity of Arctic climate simulations to different boundary layer parameterizations in a regional climate model. Tellus 53A:1–26Google Scholar
  14. Dudhia J (1993) A nonhydrostatic version of the Penn State - NCAR mesoscale model: Validation tests and simulations of an Atlantic cyclone and cold front. Mon Wea Rev 121:1493– 1513CrossRefGoogle Scholar
  15. Giorgi F, Marinucci MR, Bates GT, de Canio G (1993) Development of a second generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832CrossRefGoogle Scholar
  16. Girard E, Blanchet JP (2001) Microphysical parameterizations of arctic diamond dust, ice fog and thin stratus for climate models. J Atmos Sci 7:1199–1221CrossRefGoogle Scholar
  17. Hagemann S, Arpe K, Bengtsson L (2004) Validation of the hydrological cycle of ERA40. Max Planck Inst. for Meteorol., HamburgGoogle Scholar
  18. Hodur RM (1997) The Naval Research Laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon Wea Rev 125:1414–1430CrossRefGoogle Scholar
  19. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  20. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56A:328Google Scholar
  21. Jones PM, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J Clim 16:206–223CrossRefGoogle Scholar
  22. Jones CG, Wyser K, Ullerstig A, Willen U (2004a) The Rossby Centre Regional Atmospheric Climate Model (RCA) PartII: Applicationto the arctic climate. Ambio 33:261–266CrossRefGoogle Scholar
  23. Jones CG, Willen U, Ullerstig A, Hansson U (2004b) The Rossby Centre Regional Atmospheric Climate Model (RCA). Part I: Model climatology and performance for the present climate over Europe. Ambio 33Google Scholar
  24. Key J (2001) The cloud and surface parameter retrieval (CASPR) system for polar AVHRR data user’s guide. Space Science and Engineering Center, Univ. of Wisconsin, Madison, pp 62Google Scholar
  25. Køltzow M, Eastwood S, Haugen JE (2003) Parameterization of snow and sea ice albedo in climate models, Research Report 149, Norwegian Meteorological InstituteGoogle Scholar
  26. Laprise R, Caya D, Giguere M, Bergeron G, Cote H, Blanchet JP, Boer GJ, McFarlane NA (1998) Climate and climate change in Western Canada as simulated by the Canadian regional climate model. Atmos Ocean 36:119–167Google Scholar
  27. Lynch AH, Chapman WL, Walsh JE, Weller G (1995) Development of a regional climate model of the Western Arctic. J Clim 8:1555–1570CrossRefGoogle Scholar
  28. Lynch AH, Maslanik JA, Wu W (2001) Mechanisms in the development of anomalous sea ice extent in the western Arctic: A case study. J Geophys Res 106:28097–28105CrossRefGoogle Scholar
  29. Lynch AH, Curry JA, Brunner RD, Maslanik JA (2004) Toward an integrated assessment of the impacts of extreme wind events on Barrow. Bull Amer Meteor Soc 85:209–221CrossRefGoogle Scholar
  30. Martin SE, Munoz E (1997) Properties of the Arctic 2m air temperature for 1979–1993 derived from a new gridded data set. J Clim 10:1420–1440CrossRefGoogle Scholar
  31. Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Wea Rev 118:847–873CrossRefGoogle Scholar
  32. Morrison HC, Shupe M, Curry JA (2003) Modeling clouds observed at SHEBA using a bulk microphysics parameterization implemented into a single-column model. J Geophys Res 108: 4255, Doi:10.1029/2002JD002229Google Scholar
  33. Rinke A, Dethloff K (2000) On the sensitivity of a regional Arctic climate model to initial and boundary conditions. Clim Res 14:101–113CrossRefGoogle Scholar
  34. Rinke A, Marbaix P, Dethloff K (2004) Internal variability in Arctic regional climate simulations: Case study for the SHEBA year. Clim Res 27:197–209CrossRefGoogle Scholar
  35. Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411CrossRefGoogle Scholar
  36. Serreze MC (2003) Polar products from reanalysis working group, ACSYS Final conference, November, St. Petersburg, RussiaGoogle Scholar
  37. Simmons AJ, Gibson JK (2000) The ERA-40 project plan, ERA-40 Project Rep. Ser. 1, ECMWF, Reading, UK., pp 63Google Scholar
  38. Tjernström M, Zagar M, Svensson G, Cassano JJ, Pfeifer S, Rinke A, Wyser K, Dethloff K, Jones CG, Semmler T (2005) Modeling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models with data from the SHEBA project. Boundary Layer Meteorol (in press)Google Scholar
  39. Uttal T, coauthors (2002) Surface energy budget of the Arctic ocean. Bull Am Meteorol Soc 83:255–275CrossRefGoogle Scholar
  40. Viterbo P (2003) Some aspects of the ECMWF analysis/forecast system in the polar regions. In: Workshop on Short-to-Medium Range Regional NWP in the Arctic and Antarctic, October 8–10, International Arctic Research Center University of Alaska, FairbanksGoogle Scholar
  41. Walsh JE, Kattsov VM, Chapman WL, Govorkova V, Pavlova T (2002) Comparison of Arctic climate simulations by uncoupled and coupled global models. J Clim 15:1429–1446CrossRefGoogle Scholar
  42. Wu W, Lynch AH, Rivers AR (2005) An approach to estimate uncertainty in a regional climate model. J Clim 18:917–933CrossRefGoogle Scholar
  43. Wyser K (1998) The effective radius in ice clouds. J Clim 11:1793–1802CrossRefGoogle Scholar
  44. Wyser K, Jones CG (2005) Modeled and observed clouds during surface heat budget of the arctic ocean (SHEBA). J Geophys Res 110: D09207. Doi:10.1029/2004JD004751Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Rinke
    • 1
  • K. Dethloff
    • 1
  • J. J. Cassano
    • 2
  • J. H. Christensen
    • 3
  • J. A. Curry
    • 4
  • P. Du
    • 5
  • E. Girard
    • 5
  • J.-E. Haugen
    • 6
  • D. Jacob
    • 8
  • C. G. Jones
    • 10
  • M. Køltzow
    • 6
  • R. Laprise
    • 5
  • A.H. Lynch
    • 7
  • S. Pfeifer
    • 8
  • M. C. Serreze
    • 2
  • M. J. Shaw
    • 2
  • M. Tjernström
    • 9
  • K. Wyser
    • 10
  • M. Žagar
    • 9
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  2. 2.Cooperative Institute for Research in Environmental Sciences and Program in Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA
  3. 3.Danish Meteorological InstituteCopenhagenDenmark
  4. 4.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  5. 5.Department of Earth and Atmospheric SciencesUniversity of QuebecMontrealCanada
  6. 6.Norwegian Meteorological InstituteOsloNorway
  7. 7.School of Geography and Environmental ScienceMonash UniversityMelbourneAustralia
  8. 8.Max Planck Institute for MeteorologyHamburgGermany
  9. 9.Department of MeteorologyStockholm UniversityStockholmSweden
  10. 10.Rossby CentreSMHINorrköpingSweden

Personalised recommendations