## Abstract

In this study, projections of seasonal means and extremes of ocean wave heights were made using projections of sea level pressure fields conducted with three global climate models for three forcing-scenarios. For each forcing-scenario, the three climate models’ projections were combined to estimate the multi-model mean projection of climate change. The relative importance of the variability in the projected wave heights that is due to the forcing prescribed in a forcing-scenario was assessed on the basis of ensemble simulations conducted with the Canadian coupled climate model CGCM2. The uncertainties in the projections of wave heights that are due to differences among the climate models and/or among the forcing-scenarios were characterized. The results show that the multi-model mean projection of climate change has patterns similar to those derived from using the CGCM2 projections alone, but the magnitudes of changes are generally smaller in the boreal oceans but larger in the region nearby the Antarctic coastal zone. The forcing-induced variance (as simulated by CGCM2) was identified to be of substantial magnitude in some areas in all seasons. The uncertainty due to differences among the forcing-scenarios is much smaller than that due to differences among the climate models, although it was identified to be statistically significant in most areas of the oceans (this indicates that different forcing conditions do make notable differences in the wave height climate change projection). The sum of the model and forcing-scenario uncertainties is smaller in the JFM and AMJ seasons than in other seasons, and it is generally small in the mid-high latitudes and large in the tropics. In particular, some areas in the northern oceans were projected to have large changes by all the three climate models.

### Similar content being viewed by others

## References

Caires S, Sterl A, Komen G, Swail V, (2004a) The Web-based KNMI/ERA-40 global wave climatology atlas. WMO Bull 53(2):142–146

Caires S, Sterl A, Bidlot J-R, Graham N, Swail V (2004b) Intercomparison of different wind-wave reanalyses. J Clim 17:1893–1913

Caires S, Swail VR, Wang XLL (2005) Projection and analysis of extreme wave climate. J Clim (accepted)

Flato GM, Boer GJ (2001) Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–198

Gibson R, Kallberg P, Uppala S (1996) The ECMWF reanalysis (ERA) project. ECMWF Newslett 73:7–17

Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, p 881

Huitson A (1966) The analysis of variance. Charles Griffin & Company Ltd., London, p 83

Johnson RA, Wichern DW (1982) Applied multivariate statistical analysis. Prentice-Hall Inc, Englewood Cliffs, p 594

Kushnir Y, Cardone VJ, Greenwood JG, Cane MA (1997) The recent increase in North Atlantic wave heights. J Clim 10:2107–2113

Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59

Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios (SRES). Cambridge University Press, Cambridge, p 599

Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil M, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996a) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Technical report 218, Max-Plank-Institut für Meteorologie, Hamburg, Germany, p 90

Roeckner E, Oberhuber JM, Bacher A, Christoph M, Kirchner I (1996b) ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. Clim Dyn 12:737–754

Simmons AJ, Gibson JK (2000) The ERA-40 project plan. ERA-40 Project Report Series No 1 (Available online at http://www.ecmwf.int/research/era/)

Sterl A (2004) On the (In)homogeneity of reanalysis products. J Clim 17:3866–3873

Uppala S (2001) ECMWF ReAnalysis, 1957–2001. In: Proceedings of the ECMWF workshop on reanalysis, ERA-40 Project report series No 3: 1–10, Reading, UK, pp 5–9

von Storch H, Navarra A (1995) Analysis of climate variability—applications of statistical techniques. Springer, Berlin Heidelberg New York, p 334

von Storch H, Reichardt H (1997) A scenario of storm surge statistics for the German Bight at the expected time of doubled atmospheric carbon dioxide concentration. J Clim 10:2653–2662

von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484

Wang XLL, Swail VR (2001) Changes of extreme wave heights in Northern Hemisphere Oceans and related atmospheric circulation regimes. J Clim 14:2204–2221

Wang XLL, Swail VR (2002) Trends of Atlantic wave extremes as simulated in a 40-year wave hindcast using kinematically reanalyzed wind fields. J Clim 15:1020–1035

Wang XLL, Swail VR (2005) Historical and possible future changes of wave heights in northern hemisphere oceans. In: Perrie W (eds) Atmosphere ocean interactions, Vol 2. (Advances in Fluid Mechanics Series Vol 39) Wessex Institute of Technology Press (in press)

Wang XLL, Zwiers FW (1999) Interannual variability of precipitation in an ensemble of AMIP climate simulations conducted with the CCC GCM2. J Clim 12:1322–1335

Wang XLL, Zwiers FW, Swail VR (2004a) North Atlantic ocean wave climate change scenarios for the twenty-first century. J Clim 17:2368–2383

Wang XLL, Swail VR, Zwiers FW (2004b) Climatology and changes of extra-tropical storm tracks and cyclone activities as derived from two global reanalyses and the Canadian CGCM2 projections of future climate. In: Preprints of the eighth international workshop on wave forecast and hindcast, 14–19 November 2004, North Shore, Hawaii

Wang XLL, Swail VR, Zwiers FW (2005) Climatology and changes of extra-tropical cyclone activity: Comparison of ERA-40 with NCEP/NCAR Reanalysis for 1958–2001. J Clim (accepted)

WASA Group (1998) Changing waves and storms in the Northeast Atlantic? Bull Am Meteorol Soc 79:741–760

Zhang XB, Zwiers FW (2004) Comments on “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test” by Sheng Yue and Chun Yuan Wang. Water Resources Res 40: W03805, DOI:10.1029/2003WR002073

Zwiers FW, Wang XLL, Sheng J (2000) Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations. J Geophys Res 105:7295–7315

## Acknowledgments

The authors are greatly indebted to Qiuzi Wen and Yang Feng for their computing support. The authors thank Dr. Francis Zwiers for his help in clarifying questions about ANOVA techniques. Drs. Sofia Caires and Vicheslav Kharin are acknowledged for their helpful comments on an earlier version of this manuscript. All anonymous reviewers are also acknowledged for their helpful comments.

## Author information

### Authors and Affiliations

### Corresponding author

## Appendix: analysis of variance

### Appendix: analysis of variance

According to the one-factor ANOVA model (Eq. 4) (see Sect. 3.2), the total sum of squares of variable *Y*
_{
ts
}:

can be partitioned into two statistically independent variance components (Huitson 1966):

where

and a “o” is used to replace a subscript when an arithmetic average is taken over that index (this notation is used throughout this section). The null hypothesis

can be tested by comparing

with the critical value *F*
_{
p
}[(*n*−1), *n*(*S*−1)] where *F*
_{
p
} [ν_{1},ν_{2}] denotes the *p*-quantile of the *F* distribution with ν_{1} and ν_{2} degrees of freedom. And the proportion of the total variance in *Y*
_{
ts
} that is due to the effects of factor β_{
t
} is estimated as

Similarly, according to the two-factor fixed effect ANOVA model (Eq. 5) (see Sect. 3.2), the total sum of squares of variable *X*
_{
ijt
}:

can be partitioned into four statistically independent variance components (Huitson 1966):

where

Therefore, the null hypothesis

can be tested by comparing

with the critical value *F*
_{
p
}[(*m*−1), *mq*(*n*−1)]. And an unbiased estimator of the proportion of the total variance in *X*
_{
ijt
} that is due to the effects of factor γ_{
i
} is

Similarly, the null hypothesis

can be tested by comparing

with the critical value *F*
_{
p
}[(*q*−1), *mq*(*n*−1)]. And the proportion of the total variance in *X*
_{
ijt
} that is due to the effects of factor θ_{
j
} is estimated as

The null hypothesis

can be tested by comparing

with the critical value *F*
_{
p
}[(*m*−1)(*q*−1), *mq*(*n*−1)]. And the proportion of the total variance in *X*
_{
ijt
} that is due to the interaction effects δ_{
ij
} is estimated as

Also, the null hypothesis

can be tested by comparing

with the critical value *F*
_{
p
} [(*mq*−1), *mq*(*n*−1)]. And the proportion of the total variance in quantity *X*
_{
ijt
} that is due to the total effects of all factors (i.e., γ_{
i
}, θ_{
j
}, and δ_{
ij
}) is estimated as

## Rights and permissions

## About this article

### Cite this article

Wang, X.L., Swail, V.R. Climate change signal and uncertainty in projections of ocean wave heights.
*Clim Dyn* **26**, 109–126 (2006). https://doi.org/10.1007/s00382-005-0080-x

Received:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s00382-005-0080-x