Climate Dynamics

, Volume 25, Issue 6, pp 653–670 | Cite as

Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results

  • M. Déqué
  • R. G. Jones
  • M. Wild
  • F. Giorgi
  • J. H. Christensen
  • D. C. Hassell
  • P. L. Vidale
  • B. Rockel
  • D. Jacob
  • E. Kjellström
  • M. de. Castro
  • F. Kucharski
  • B. van den Hurk
Article

Abstract

Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs.

References

  1. Aldrian E, Dümenil Gates L, Jacob D, Podzun R, Gunawan D (2004) Long term simulation of the Indonesian rainfall with the MPI Regional Model. Climate Dyn 22:795–814CrossRefGoogle Scholar
  2. Anthes RA, Hsie EY, Kuo YH (1987) Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Technical Note-282 NCAR, Boulder, CO 80307Google Scholar
  3. Arribas A, Gallardo C, Gaertner MA, Castro M (2003) Sensitivity of Iberian Peninsula climate to land degradation. Climate Dyn 20:477–489Google Scholar
  4. Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR technical Note NCAR/TN-417+STR. National Center for Atmospheric Research, Boulder, Colorado, pp 150Google Scholar
  5. Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Wea Rev 113:2108–2121CrossRefGoogle Scholar
  6. Brankovic C, Gregory D (2001) Impact of horizontal resolution on seasonal integrations. Climate Dyn 18:123–143CrossRefGoogle Scholar
  7. Bringfelt B, Räisänen J, Gollvik S, Lindström G, Graham LP, Ullerstig A (2001) The land surface treatment for the Rossby Centre Regional Atmospheric Climate Model version 2 (RCA2) Reports Meteorology and Climatology, 98. Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, pp 40Google Scholar
  8. Castro M, Fernández C, Gaertner MA (1993) Description of a meso-scale atmospheric numerical model. In: JI Díaz, JL Lions (eds) Mathematics, climate and environment. Masson, Paris, pp 230–253Google Scholar
  9. Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421:805–806CrossRefPubMedGoogle Scholar
  10. Christensen OB, Christensen JH (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Plan Change 44:107–117CrossRefGoogle Scholar
  11. Christensen JH, van Meijgaard E (1992) On the construction of a regional atmospheric climate model. DMI Technical Report 92–14. Available from DMI, Lyngbyvej 100, Copenhagen Ø, DenmarkGoogle Scholar
  12. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. DMI Scientific Report 96–4. Available from DMI, Lyngbyvej 100, Copenhagen Ø, DenmarkGoogle Scholar
  13. Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia—present climate. J Climate 11:3204–3229CrossRefGoogle Scholar
  14. Christensen JH, Ra J, Iversen T, Bjorge D, Christensen OB, Rummukainen M (2001a) A synthesis of regional climate change simulations—a Scandinavian perspective. Geophys Res Lett 28(1):1003–1006CrossRefGoogle Scholar
  15. Christensen JH, Christensen OB, Schultz JP (2001b) High resolution physiographic data set for HIRHAM4: an application to a 50 km horizontal resolution domain covering Europe. DMI Technical Report 01–15. Available from DMI, Lyngbyvej 100, Copenhagen Ø, DenmarkGoogle Scholar
  16. Cox P, Betts R, Bunton C, Essery R, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn 15:183–203CrossRefGoogle Scholar
  17. Cubasch U, Waszkewitz J, Hegerl G, Perlwitz J (1995) Regional climate changes as simulated in time-slice experiments. Clim Change 31:273–300CrossRefGoogle Scholar
  18. Denis B, Laprise R, Caya D (2003) Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Climate Dyn 20:107–126Google Scholar
  19. Déqué M, Gibelin AL (2002) High versus variable resolution in climate modelling. Res Activ Atmos Ocean Model 32:704–705Google Scholar
  20. Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Climate Dyn 11:321–339CrossRefGoogle Scholar
  21. Déqué M, Marquet P, Jones R (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn 14:173–189CrossRefGoogle Scholar
  22. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model, NCAR Technical Note, NCAR/TN-387+STR, 72 ppGoogle Scholar
  23. Döscher R, Willén U, Jones C, Rutgersson A, Meier H, Hansson E, Graham M (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  24. Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) The importance of vegetation feedbacks in doubled-CO2 time-slice experiments. J Geophys Res 105:14841–14861CrossRefGoogle Scholar
  25. Ducoudré N, Kaval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J Climate 6:248–273CrossRefGoogle Scholar
  26. Dümenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. In: O’Kane JP (ed) Advances in theoretical hydrology EGS series of hydrological sciences 1. Elsevier, Amsterdam, pp 129–157Google Scholar
  27. Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: Choosing a configuration for a large scale model. Quart J Roy Meteor Soc 122:689–719CrossRefGoogle Scholar
  28. Fox-Rabinowitz MS, Tackacs LL, Govindajaru RC, Suarez MJ (2001) A variable resolution stretched grid GCM: regional climate simulation. Mon Wea Rev 129:453–469CrossRefGoogle Scholar
  29. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108 (D3), 4124 doi:101029/2002JD002287Google Scholar
  30. Fukutome S, Frei C, Lüthi D, Schär C (1999) The interannual variability as a test ground for regional climate simulations over Japan. J Meteor Soc Japan 77:649–672Google Scholar
  31. Gaertner MA, Christensen OB, Prego JA, Polcher J, Gallardo C, Castro M (2001) The impact of deforestation on the hydrological cycle in the western Mediterranean: an ensemble study with two regional climate models. Climate Dyn 17:857–873CrossRefGoogle Scholar
  32. Gallardo C, Arribas A, Prego JA, Gaertner MA, Castro M (2001) Multi-year simulations with a high resolution regional climate model over the Iberian Peninsula: current climate and 2xCO2 scenario. Quart J Roy Meteor Soc 127:1659–1682CrossRefGoogle Scholar
  33. Garand L (1983) Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J Atmos Sci 40:230–244CrossRefGoogle Scholar
  34. Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dyn 20:327–339Google Scholar
  35. Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Climate 3:941–963CrossRefGoogle Scholar
  36. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2) Part I: Boundary layer and radiative transfer processes. Mon Wea Rev 121:2794–2813CrossRefGoogle Scholar
  37. Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832CrossRefGoogle Scholar
  38. Giorgi F, Mearns LO, Shields C, McDaniel L (1998) Regional nested model simulations of present day and 2×CO2 climate over the central plains of the USA. Clim Change 40:457–493CrossRefGoogle Scholar
  39. Giorgi F, Huang Y, Nishizawa K, Fu C (1999) A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J Geophys Res 104:6403–6423CrossRefGoogle Scholar
  40. Giorgi F, Bi X, Pal JS (2004a) Means, trends and interannual variability in a regional climate change experiment over Europe. Part I: Present day climate (1961–1990). Climate Dyn 22:733–756CrossRefGoogle Scholar
  41. Giorgi F, Bi X, Pal JS (2004b) Means, trends and interannual variability in a regional climate change experiment over Europe. Part II: Future climate scenarios (2071–2100). Climate Dyn 22:839–858CrossRefGoogle Scholar
  42. Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: Tests in single column and general circulation models. Quart J Roy Meteor Soc 123:1153–1183CrossRefGoogle Scholar
  43. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Re 121:764–787CrossRefGoogle Scholar
  44. Hagemann S, Botzet M, Dümenil L, Machenhauer B (1999) Derivation of globalGCM boundary conditions from 1 km land use satellite data. MPI Report 289, Max-Planck Institut für MeteorologieGoogle Scholar
  45. Hagemann S, Machenhauer B, Jones RG, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Climate Dynamics, in pressGoogle Scholar
  46. Heck P, Lüthi D, Wernli H, Schär C (2001) Climate impacts of European-scale anthropogenic vegetation changes: a study with a regional climate model. J Geophys Res-Atmos 106(D8):7817–7835CrossRefGoogle Scholar
  47. Hennemuth B, Rutgersson A, Bumke K, Clemens M, Omstedt A, Jacob D, Smedman AS (2003) Net precipitation over the Baltic Sea for one year using models and data-based methods. Tellus 55A:352–367CrossRefGoogle Scholar
  48. Hsie EY, Anthes RA, Keyser D (1984) Numerical simulation of frontogenesis in a moist atmosphere. J Atmos Sci 41:2581–2594CrossRefGoogle Scholar
  49. Hulme M, Conway D, Jones PD, Jiang T, Barrow EM, Turney C (1995) Construction of a 1961–90 European climatology for climate modelling and impacts applications. Int J Climatol 15:1333–1363CrossRefGoogle Scholar
  50. IPCC (2001) Climate change. The scientific basis. Cambridge Univ Press, pp 881Google Scholar
  51. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  52. Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2001) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emission scenarios. Hadley Centre Technical Note 22:62Google Scholar
  53. Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxyde. Quart J Roy Meteor Soc 123:265–292CrossRefGoogle Scholar
  54. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004a) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK, pp 35Google Scholar
  55. Jones CG, Ullerstig A, Willén U, Hansson U (2004b) The Rossby Centre regional atmospheric climate model (RCA). Part I: Model climatology and performance characteristics for present climate over Europe. Ambio 33(4–5):199–210PubMedCrossRefGoogle Scholar
  56. Kain J, Fritsch JM (1990) A one dimensional entraining/detraining plume models and its application to convective parameterization. J Atmos Sci 47:2784–2802CrossRefGoogle Scholar
  57. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation models. Meteor Monographs 10, Americ Meteor Soc Boston, MAGoogle Scholar
  58. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note, NCAR/TN-420+STR, pp 152Google Scholar
  59. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Climate 11:1131–1149CrossRefGoogle Scholar
  60. Kjellström E, Döscher R, Meier HEM, Banks H (2004) Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments. Nordic Hydrology, submittedGoogle Scholar
  61. Laprise R, Caya D, Frigon A, Paquin D (2003) Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America. Climate Dynamics 21:405–421CrossRefGoogle Scholar
  62. Lehmann A, Lorenz P, Jacob D (2004) Exceptional Baltic Sea inflow events in 2002–2003. Geophysical Research Letters 2004GL020830Google Scholar
  63. Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model developments. KNMI Technical Report 252:24Google Scholar
  64. Lin SJ, Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Wea Rev 124:2046–2070CrossRefGoogle Scholar
  65. Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1095CrossRefGoogle Scholar
  66. Lorant V, Royer JF (2001) Sensitivity of equatorial convection to horizontal resolution in aqua-planet simulations with variable-resolution GCM. Mon Wea Rev 129:2730–2745CrossRefGoogle Scholar
  67. Machenhauer B, Windelband M, Botzet M, Hesselbjerg-Christensen J, Déqué M, Jones RG, Ruti P, Visconti G (1998) Validation and analysis of regional present-day climate and climate change simulations over Europe. MPI Report (Hamburg) 275:87Google Scholar
  68. Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea. Application to the salt inflow. J Geophys Res 108,C8:3273CrossRefGoogle Scholar
  69. Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon Wea Rev 120:978–1002CrossRefGoogle Scholar
  70. Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Wea Rev 118:847–873CrossRefGoogle Scholar
  71. Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department, Technical Memorandum No. 206, October 1994, 41 pp, European Centre for Medium Range Weather Forecasts, Reading, UKGoogle Scholar
  72. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594CrossRefGoogle Scholar
  73. Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willén U (2004) European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Climate Dyn 22:13–31CrossRefGoogle Scholar
  74. Rasch PJ, Kristjansson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Climate 11:1587–1614CrossRefGoogle Scholar
  75. Rencher AC (2002) Methods of multivariate analysis. 2nd edition. Wiley series in probability and statistics: 708Google Scholar
  76. Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115Google Scholar
  77. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Wea Rev 120:303–325CrossRefGoogle Scholar
  78. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—Part 1. MPI Report 349:127Google Scholar
  79. Sanchez E, Gallardo C, Gaertner M, Arribas A, Castro A (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change, in pressGoogle Scholar
  80. Savijärvi H (1990) Fast radiation parameterization schemes for mesoscale and short-range forecast models. J Appl Meteor 29:437–447CrossRefGoogle Scholar
  81. Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a Regional Climate Model. J Climate 12:722–741CrossRefGoogle Scholar
  82. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefPubMedGoogle Scholar
  83. Semmler T, Jacob D, Schlünzen KH, Podzun R (2004) Influence of sea ice treatment in a regional climate model on boundary layer values in the Fram Strait region. Month Weather Rev 132:985–999CrossRefGoogle Scholar
  84. Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Quart J R Met Soc 116:435–460CrossRefGoogle Scholar
  85. Statton RA (1999) A high resolution AMIP integration using the Hadley Centre model HadAM2b. Climate Dyn 15:9–28CrossRefGoogle Scholar
  86. Stendel M, Roeckner E (1998) Impacts of horizontal resolution on simulated climate statistics in ECHAM4. MPI Report 253:57Google Scholar
  87. Stephens GL (1978) Radiation profiles in extended water clouds: II Parameterizaton schemes. J Atmos Sci 35:2123–2132CrossRefGoogle Scholar
  88. Stephenson DB, Doblas-Reyes FJ (2000) Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus 52A:300–322CrossRefGoogle Scholar
  89. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atm Phys 82:75–96CrossRefGoogle Scholar
  90. Sud YC, Walker GK (1999) Microphysics of clouds with the Relaxed Arakawa-Schubert cumulus scheme (McRAS). Part I: Design and evaluation with GATE Phase III data. J Atmos Sci 56:3196–3220CrossRefGoogle Scholar
  91. Sundquist H (1978) A parameterization scheme for non-convective condensation including precipitation including prediction of cloud water content. Quart J R Met Soc 104:677–690CrossRefGoogle Scholar
  92. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  93. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800CrossRefGoogle Scholar
  94. Van den Hurk BJJM, Viterbo P, Beljaars ACM, Betts AK (2000) Offline validation of the ERA40 surface scheme. ECMWF TechMemo 295Google Scholar
  95. Vidale PL, Lüthi C, Frei D, Seneviratne S, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res Atmos 108 (D18), 4586 doi:101029/2002JD002810Google Scholar
  96. Whetton PH, Katzfey JJ, Hennessy KJ, Wu X, Mc Gregor JL, Nguyen K (2001) Developing scenarios of climate change for Southeastern Australia: an example using regional climate model output. Clim Res 6:181–201CrossRefGoogle Scholar
  97. White PW (2002) Physical processes (cycle 24R4). IFS documentation. ECMWF, ReadingGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Déqué
    • 1
  • R. G. Jones
    • 2
  • M. Wild
    • 3
  • F. Giorgi
    • 4
  • J. H. Christensen
    • 5
  • D. C. Hassell
    • 2
  • P. L. Vidale
    • 3
  • B. Rockel
    • 6
  • D. Jacob
    • 7
  • E. Kjellström
    • 8
  • M. de. Castro
    • 9
  • F. Kucharski
    • 4
  • B. van den Hurk
    • 10
  1. 1.Météo-FranceCentre National de Recherches MétéorologiquesToulouse Cedex 01France
  2. 2.Met OfficeHadley Centre for Climate Prediction and ResearchDevonUK
  3. 3.Institute for Atmospheric and Climate Science, ETHSwiss Federal Institute of TechnologyZürichSwitzerland
  4. 4.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  5. 5.Danish Meteorological InstituteCopenhagen ØDenmark
  6. 6.GKSS Forschungszentrum Geesthacht GmbHInstitute of Coastal ResearchGeesthachtGermany
  7. 7.Max-Planck-Institut für MeteorologieHamburgGermany
  8. 8.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  9. 9.Dept. de Ciencias AmbientalesUniversidad de Castilla La ManchaToledoSpain
  10. 10.KNMIAE De BiltNetherland

Personalised recommendations